Kuan Wang
2025
Adapting LLM Agents with Universal Communication Feedback
Kuan Wang
|
Yadong Lu
|
Michael Santacroce
|
Yeyun Gong
|
Chao Zhang
|
Yelong Shen
Findings of the Association for Computational Linguistics: NAACL 2025
Recent advances in large language models (LLMs) have demonstrated potential for LLM agents. To facilitate the training for these agents with both linguistic feedback and non-linguistic reward signals, we introduce Learning through Communication (LTC). We design a universal buffer to store all the feedback, and an iterative pipeline to enable an LLM agent to explore and update its policy in an given environment. To optimize agent interactions for task-specific learning with our universal buffer and pipeline, we introduce diverse communication patterns tailored for both single-agent and multi-agent environments. We evaluate the efficacy of our LTC approach on four diverse datasets: ALFWorld (single-agent), HotpotQA (multi-agent collaboration), Chameleon (multi-agent competition), and GSM8k (multi-agent teacher-student). On these data sets, LTC outperforms the supervised instruction fine-tuning baselines by 3.6% to 12%. These results highlight the versatility and efficiency of LTC in facilitating online adaptation for LLM agents.
2024
ARL2: Aligning Retrievers with Black-box Large Language Models via Self-guided Adaptive Relevance Labeling
LingXi Zhang
|
Yue Yu
|
Kuan Wang
|
Chao Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Retrieval-augmented generation enhances large language models (LLMs) by incorporating relevant information from external knowledge sources. This enables LLMs to adapt to specific domains and mitigate hallucinations in knowledge-intensive tasks. However, existing retrievers are often misaligned with LLMs due to separate training processes and the inherent black-box nature of LLMs. To address this challenge, we propose ARL2, a retriever learning technique that harnesses LLMs as labelers. ARL2 leverages LLMs to annotate and score adaptive relevance evidence, enabling the retriever to learn from robust LLM supervision. Furthermore, ARL2 incorporates a self-training strategy to minimize the cost of API calls. Extensive experiments demonstrate the effectiveness of ARL2, achieving accuracy improvements of 5.4% on NQ and 4.6% on MMLU compared to the state-of-the-art methods. Additionally, ARL2 exhibits robust transfer learning capabilities and strong zero-shot generalization abilities.
Search
Fix data
Co-authors
- Chao Zhang 2
- Yeyun Gong 1
- Yadong Lu 1
- Michael Santacroce 1
- Yelong Shen 1
- show all...