Deokgi Kim
2025
Representation-to-Creativity (R2C): Automated Holistic Scoring Model for Essay Creativity
Deokgi Kim
|
Joonyoung Jo
|
Byung-Won On
|
Ingyu Lee
Findings of the Association for Computational Linguistics: NAACL 2025
Despite active research on Automated Essay Scoring (AES), there is a noticeable scarcity of studies focusing on predicting creativity scores for essays. In this study, we develop a new essay rubric specifically designed for assessing creativity in essays. Leveraging this rubric, we construct ground truth data consisting of 5,048 essays. Furthermore, we propose a novel self-supervised learning model that recognizes cluster patterns within the essay embedding space and leverages them for creativity scoring. This approach aims to automatically generate a high-quality training set, thereby facilitating the training of diverse language models. Our experimental findings indicated a substantial enhancement in the assessment of essay creativity, demonstrating an increase in F1-score up to 58% compared to the primary state-of-the-art models across the ASAP and AIHUB datasets.
2023
A Comparative Analysis of the Effectiveness of Rare Tokens on Creative Expression using ramBERT
Youbin Lee
|
Deokgi Kim
|
Byung-Won On
|
Ingyu Lee
Findings of the Association for Computational Linguistics: ACL 2023
Until now, few studies have been explored on Automated Creative Essay Scoring (ACES), in which a pre-trained model automatically labels an essay as a creative or a non-creative. Since the creativity evaluation of essays is very subjective, each evaluator often has his or her own criteria for creativity. For this reason, quantifying creativity in essays is very challenging. In this work, as one of preliminary studies in developing a novel model for ACES, we deeply investigate the correlation between creative essays and expressiveness. Specifically, we explore how rare tokens affect the evaluation of creativity for essays. For such a journey, we present five distinct methods to extract rare tokens, and conduct a comparative study on the correlation between rare tokens and creative essay evaluation results using BERT. Our experimental results showed clear correlation between rare tokens and creative essays. In all test sets, accuracies of our rare token masking-based BERT (ramBERT) model were improved over the existing BERT model up to 14%.