
PPDB 2.0: Supplementary Material

1 Full list of features distributed with
PPDB 2.0

Features are listed alphabetically. Bold indicates
that the feature is new in the 2.0 release of PPDB.

• Abstract – a binary feature that indicates
whether the rule is composed exclusively of
nonterminal symbols.

• Adjacent – a binary feature that indicates
whether rule contains adjacent nonterminal
symbols.

• AGigaSim – the distributional similarity of
e1 and e2, computed according to contexts
observed in the Annotated Gigaword corpus
(Napoles et al., 2012).

• CharCountDiff – a feature that calculates the
difference in the number of characters be-
tween the phrase and the paraphrase. This
feature is used for the sentence compres-
sion experiments described in Napoles et al.
(2011).

• CharLogCR – the log-compression ratio in
characters, log chars(f2)

chars(f1)
, another feature used

in sentence compression.

• ComplexityDiff – the difference in com-
plexity between e1 and e2, according to the
method described in Pavlick and Nenkova
(2015). Not present for every pair. Positive
value implies that e1 is more complex than
e2, negative that e1 is simpler than e2.

• ContainsX – a binary feature that indicates
whether the nonterminal symbol X is used in
this rule. X is the symbol used in Hiero gram-
mars (Chiang, 2007), and is sometimes used
by our syntactic SCFGs when we are unable
to assign a linguistically motivated nontermi-
nal.

• Equivalence – predicted probability that the
paraphrase pair represents semantic equiva-
lence (e1 entails e2 and e2 entails e1), accord-
ing to model used in Pavlick et al. (2015).

• Exclusion – predicted probability that the
paraphrase pair represents semantic exclu-
sion.

• FirstAppearsIn[S|M|L|XL|XXL|XXXL] –
binary feature indicating the PPDB 1.0 size
(S through XXXL) where the paraphrase pair
first appears. Only one feature (e.g. one size)
will be present for each pair.

• FormalityDiff – the difference in formality
between e1 and e2. Not present for every pair.
Positive value implies that e1 is more formal
than e2, negative that e1 is more casual than
e2.

• ForwardEntailment – predicted probability
that the paraphrase pair represents forward
entailment (e1 entails e2). Either this fea-
ture or the ReverseEntailment feature will be
present, but not both.

• GlueRule – a binary feature that indicates
whether this is a glue rule. Glue rules are
treated specially by the Joshua decoder (Post
et al., 2013). They are used when the de-
coder cannot produce a complete parse using
the other grammar rules.

• GoogleNgramSim – the distributional simi-
larity of e1 and e2, computed according to
contexts observed in the Google Ngram cor-
pus (Brants and Franz, 2006).

• Identity – a binary feature that indicates
whether the phrase is identical to the para-
phrase.

• Independent – predicted probability that the
paraphrase pair represents semantic indepen-
dence.

• Lex(e2|e1) – the “lexical translation” prob-
ability of the paraphrase given the original
phrase. This feature is estimated as defined
by Koehn et al. (2003)

• Lex(e1|e2) – the lexical translation probabil-
ity of phrase given the paraphrase.

• Lexical – a binary feature that says whether
this is a single word paraphrase.

• LogCount – the log of the frequency estimate
for this paraphrase pair.

• Monotonic – a binary feature that indicates
whether multiple nonterminal symbols occur
in the same order (are monotonic) or if they
are re-ordered.

• MVLSASim – Cosine similarity according
to the Multiview Latent Semantic Analy-
sis embeddings described by Rastogi et al.
(2015).

• OtherRelated – predicted probability that
the paraphrase pair represents topical relat-
edness but not entailment. In terms of strict
entailment, this can be treated the same as In-
dependent, but pairs in the OtherRelated class
are predicted to be more semantically similar
than pairs in the Independent class.

• PhrasePenalty – this feature is used by the
decoder to count how many rules it uses in
a derivation. Turning helps it to learn to
prefer fewer longer phrases, or more shorter
phrases. The value of this feature is always 1.

• PPDB1.0Score – the score used to rank para-
phrases in the original release of PPDB, com-
puted according to the heurisitic weighting
given in the paper.

• RarityPenalty – this feature marks rules that
have only been seen a handful of times. It
is calculated as exp(1 − c(e1, e2)), where
c(e1, e2) is the estimate of the frequency of
this paraphrase pair.

• ReverseEntailment – predicted probability
that the paraphrase pair represents reverse

entailment (e2 entails e1). Either this fea-
ture or the ForwardEntailment feature will be
present, but not both.

• SourceTerminalsButNoTarget – a binary fea-
ture that fires when the phrase contains ter-
minal symbols, but the paraphrase contains
no terminal symbols.

• SourceComplexity – the complexity score
for e1 according to the method described in
Pavlick and Nenkova (2015). Not present
for every pair. Higher numbers indicate
more complex phrases, lower indicate sim-
pler phrases.

• SourceFormality – the formality score for e1
according to the same method. Not present
for every pair. Higher numbers indicate more
formal phrases, lower indicate more casual
phrases.

• SourceWords – the number of words in the
original phrase.

• TargetTerminalsButNoSource – a binary fea-
ture that fires when the paraphrase contains
terminal symbols but the original phrase only
contains nonterminal symbols.

• TargetWords – the number of words in the
paraphrase.

• TargetComplexity – the complexity score
for e2. Not present for every pair.

• TargetFormality – the formality score for
e2. Not present for every pair.

• UnalignedSource – a binary feature that fires
if there are any words in the original phrase
that are not aligned to any words in the para-
phrase.

• UnalignedTarget – a binary feature that fires
if there are any words in the paraphrase that
are not aligned to any words in the original
phrase.

• WordCountDiff – the difference in the num-
ber of words in the original phrase and the
paraphrase. This feature is used for our sen-
tence compression experiments.

• WordLenDiff – the difference in average
word length between the original phrase and

the paraphrase. This feature is useful for text
compression and simplification experiments.

• WordLogCR – the log-compression ratio in
words, estimated as log words(e) words(f).
This feature is used for our sentence com-
pression experiments.

• p(LHS|e2) – the (negative log) probabil-
ity of the lefthand side nonterminal symbol
given the paraphrase.

• p(LHS|e1) – the (negative log) probabil-
ity of the lefthand side nonterminal symbol
given the original phrase.

• p(e2|LHS) – the (negative log) probability
of the paraphrase given the lefthand side non-
terminal symbol (this is typically a very low
probability).

• p(e2|e1) – the paraphrase probability of the
paraphrase given the original phrase, as de-
fined by Bannard and Callison-Burch (2005).
This is given as a negative log value.

• p(e2|e1, LHS) – the (negative log) probabil-
ity of paraphrase given the the lefthand side
nonterminal symbol and the original phrase.

• p(e1|LHS) – the (negative log) probability
of original phrase given the the lefthand side
nonterminal (this is typically a very low prob-
ability).

• p(e1|e2) – the paraphrase probability of the
original phrase given the paraphrase, as de-
fined by Bannard and Callison-Burch (2005).
This is given as a negative log value.

• p(e1|e2, LHS) – the (negative log) probabil-
ity of original phrase given the the lefthand
side nonterminal symbol and the paraphrase.

2 Data Annotation

This section describes the method we used for
sampling and labeling training data for our scor-
ing model.

Sampling We take a random sample of para-
phrase pairs from PPDB to be scored manually.
We attempt to sample evenly across syntactic cat-
egories and across paraphrase qualities. Specifi-
cally, we collect a sample of pairs 〈e1, e2〉 as fol-
lows. First, we take a random 50 e1s from each

syntactic category from PPDB-XXXL (or as many
as are in the database, if there are fewer than 50),
ignoring e1s for which there are fewer than 3 para-
phrases (e2s). Then, for each e1, we sort the list of
e2s by the paraphrase probability p(e1|e2), and di-
vide the list into 10 buckets. We use the p(e1|e2)
score rather than the PPDB 1.0 of the paper so as
not to bias our sample based on the current scor-
ing. From each bucket, we sample 3 e2s (or as
many as are available), resulting in a list of up to
30 e2s per chosen e1. In total, this gives us a sam-
ple of 26,455 〈e1, e2〉 pairs to be labeled.

Manual judgements We collect judgements on
Mechanical Turk using the 1 to 5 rating described
in Callison-Burch (2008) and summarized in Table
1. Each pair was judged out of context and Turk-
ers were asked to consider the meaning only, not
the grammaticality of the paraphrase in relation to
the phrase. Each pair was judged by 5 independent
workers and we take the average of their scores as
the true score for each pair. Table 2 shows exam-
ples of pairs with varying quality levels according
to the average MTurk rating.

We embedded quality control questions in each
HIT, using WordNet synonyms as a gold standard
example of good paraphrases (for which we ex-
pected a rating of 4 or 5) and random word pairs
as gold standard examples of bad paraphrases (for
which we expected a rating of 1 or 2). We rejected
workers who fell below 40% accuracy on our con-
trols after 10 or more HITs. Overall, workers aver-
aged 71% accuracy on our controls. We use Spear-
man correlation to measure agreement: the aver-
age ρ between two workers was 0.57 and the av-
erage correlation of each worker with the mean of
the other 4 was 0.65.

3 Features used to train PPDB 2.0
ranking model

Below we list the features in the supervised model
used to predict the PPDB 2.0 paraphrase scores.
The model used was a ridge regression, with pa-
rameter settings tuned using cross validation on
the 26k training pairs described above.

Lexical features We compute the following
string similarity features: Levenstein distance,
Jaccard distance, Hamming distance, whether e1 is
a substring of e2, whether e2 is a substring of e1,
the number of words in e1, the number of words
in e2, the number of words shared by e1 and e2.

5 Perfect All of the meaning of the first phrase is retained in the second, and nothing is added.
4 Minor differences The meaning of the first phrase is retained in the second, although some minor informa-

tion may be added, or deleted.
3 Moderate differences Some of the meaning of the first phrase is retained in the second, although a non-trivial

amount of additional information was added or deleted.
2 Substantially different Substantial amount of the meaning is different.
1 Completely different The second phrase doesn’t mean anything close to the first phrase.

Table 1: Paraphrase scoring metric shown to annotators on MTurk.

5 4 3 2 1
about 10/roughly 10 afflicts/effects uncivilized/dirty advise/guess thank you, yes/match?
gladness/joy what then/what now drafting/preprocessing preferably/ever should/protect
5,000.00/5000 redifining/restating telescope/binoculars just now/doing what sweet/uh
65 and older/65 or older prepare/create smithereens/parts how hard/how angry disqualified/engulfed
km/kilometers of vacation/off work our age/this time 8,600/11,600 $/march

Table 2: Example pairs at each quality level, according to the average of 5 ratings assigned by annotators on MTurk.

We compute all of these features for five versions
of the strings: 1) e1 and e2 as is, 2) e1 and e2
with punctuation removed and written numbers re-
placed by numerals (e.g. two → 2) 3) e1 and e2
with spaces, punctuation, and numbers removed,
4) e1 and e2 with words replaced by POS tags
and 5) e1 and e2 with words replaced by their
sounded codes. (Soundex is an algorithm for map-
ping words to codes so that words can be com-
pared based on pronunciation rather than spelling.
These features were shown to be useful for para-
phrase ranking in Malakasiotis and Androutsopou-
los (2011)). We also include an explicit indicator
feature for when there are numbers in e1 and e2
and the numbers are not equivalent.

MVLSA Embeddings features We include the
cosine similarity of e1 and e2 according to Ras-
togi et al. (2015)’s vector embeddings based on
Multiview LSA. In cases when e1 or e2 is longer
than a single word, we approximate the vector for
the phrase with the vector of the rarest word in
the phrase, using the word counts in the Google
Ngram corpus.

PPDB features We use all of the features in-
cluded with PPDB 1.0. This includes all of the
non-bold features listed in Section 1. We also in-
clude the PPDB 1.0 score a feature. We include
the following “meta-PPDB” features:

• For each paraphrase pair 〈e1, e2〉, we include
the log count of the number of phrase pairs
〈E1, E2〉 that exist in PPDB such that e1 is a
substring of E1 and e2 is a substring of E2.

• For each paraphrase pair 〈e1, e2〉 and each
pair of lengths l1 and l2 such that l1 ≤

len(e1) and l2 ≤ len(e2), we include a
binary indicator for whether there exists a
phrase pair 〈ε1, ε2〉 in PPDB such that ε1 is a
substring of e1 and ε2 is a substring of e2 and
len(ε1) = l1 and len(ε2) = l2. We also in-
clude the total number of such 〈ε1, ε2〉 pairs,
as well as the length of the longest such ε.

Polarity features We include explicit indica-
tors for the following words, prefixes and suf-
fixes which are indicative of negation or of com-
paritives/superlatives: -est, -er, im-, no, non-,
not, -nt, -n’t, un-. We also include indicators
when there is a word pair in e1 that exhibits
a strong positive/negative polarity according to
Feng et al. (2013) and an equivalently strong pos-
itive/negative does not also appear in e2.

Syntax features We include the syntactic cat-
egory (LHS) assigned to the pair in PPDB. We
also include a coarse-grained syntactic category, in
which we use only the first letter of the true syn-
tactic category. We include the POS tags of the
unigrams in e1 and in e2 as a bag of words.

Translation features We derive features from
the foreign pivot words (f) used to extract each
〈e1, e2〉 pair. For each 〈e1, e2〉 and each of the 24
languages l in our bitext, we compute two asym-
metric similarity scores siml1 and siml2 capturing
the number of shared translations as a fraction of
the total translations of each phrase:

siml1 =
| tl(p1) ∩ tl(p2) |
| tl(p1) |

and

siml2 =
| tl(p1) ∩ tl(p2) |
| tl(p2) |

where tl(p) is set of observed translations of the
phrase p in language l. We compute these ratios
by looking at each language l separately as well as
by pooling the translations from all languages, e.g.

sim∗1 =
| t∗(p1) ∩ t∗(p2) |
| t∗(p1) |

where t∗(p) is the pooled set of observed transla-
tions of the phrase p across all languages:

t∗(p) =
⋃
l

tl(p).

We also compute the mean, minimum, and max-
imum of the ratios across languages, e.g.

mean1 =
1

languages

∑
l

siml1 .

Unigram features We include the unigrams
present in both e1 and e2 as a bag of words. We
also include lemmatized unigrams and normalized
unigrams in which punctuation is removed and
written numbers are replaced by the correspond-
ing numerals (e.g. two→ 2).

WordNet features For pairs in which both e1
and e2 appear in WordNet, we include binary indi-
cator features for the relation assigned to the pair
by WordNet. These features do not apply to most
of the phrasal paraphrases.

References
Colin Bannard and Chris Callison-Burch. 2005. Para-

phrasing with bilingual parallel corpora. In Pro-
ceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 597–604.

Thorsten Brants and Alex Franz. 2006. The google
web 1t 5-gram corpus version 1.1. LDC2006T13.

Chris Callison-Burch. 2008. Syntactic constraints
on paraphrases extracted from parallel corpora. In
EMNLP, pages 196–205. Association for Computa-
tional Linguistics.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. computational linguistics, 33(2):201–228.

Song Feng, Jun Sak Kang, Polina Kuznetsova, and
Yejin Choi. 2013. Connotation lexicon: A dash of
sentiment beneath the surface meaning. In Proceed-
ings of the 51th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), Sofia, Bulgaria, Angust. Association for Com-
putational Linguistics.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In
Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 48–54. Association for Computa-
tional Linguistics.

Prodromos Malakasiotis and Ion Androutsopoulos.
2011. A generate and rank approach to sentence
paraphrasing. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing, pages 96–106. Association for Computational
Linguistics.

Courtney Napoles, Chris Callison-Burch, Juri Ganitke-
vitch, and Benjamin Van Durme. 2011. Paraphras-
tic sentence compression with a character-based
metric: Tightening without deletion. In Proceed-
ings of the Workshop on Monolingual Text-To-Text
Generation, pages 84–90. Association for Computa-
tional Linguistics.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Pro-
ceedings of the Joint Workshop on Automatic Knowl-
edge Base Construction and Web-scale Knowledge
Extraction, pages 95–100. Association for Compu-
tational Linguistics.

Ellie Pavlick and Ani Nenkova. 2015. Inducing lexical
style properties for paraphrase and genre differenti-
ation. In Proceedings of NAACL.

Ellie Pavlick, Johan Bos, Malvina Nissim, Charley
Beller, Benjamin Van Durme, and Chris Callison-
Burch. 2015. Adding semantics to data-driven para-
phrasing. In ACL, pages 891–896.

Matt Post, Juri Ganitkevitch, Luke Orland, Jonathan
Weese, Yuan Cao, and Chris Callison-Burch. 2013.
Joshua 5.0: Sparser, better, faster, server. In Pro-
ceedings of the Eighth Workshop on Statistical Ma-
chine Translation, pages 206–212.

Pushpendre Rastogi, Benjamin Van Durme, and Raman
Arora. 2015. Multiview LSA: Representation learn-
ing via generalized CCA. In NAACL.

