

German in Flux:

Detecting Metaphoric Change via Word Entropy

August 4, 2017

Dominik Schlechtweg, Stefanie Eckmann, Enrico Santus, Sabine Schulte im Walde, Daniel Hole

dominik.schlechtweg@gmx.de, stefanie.eckmann@campus.lmu.de, esantus@mit.edu, schulte@ims.uni-stuttgart.de, holedan@gmail.com

Introduction

- Our aim:
 - overall: build a computational model detecting semantic change
 - in this paper: distinguish metaphoric change from semantic stability
- ► How we do it:
 - exploit the idea of semantic generality from hypernym detection
 - apply entropy to distributional semantic model
 - sample language German
 - introduce the first resource for evaluation of models of metaphoric change

Shortcomings of Related Work

- Previous work includes mainly:
 - (i) spatial displacement models
 - (ii) word sense induction models
- quantify the degree of overall change rather than being able to qualify different types
- do not examine metaphoric change

Metaphoric Change

- frequent and important type of semantic change
- source and target concept are related by similarity or a reduced comparison (cf. Koch, 2016, p. 47)
- earlier: ... muß ich mich <u>vmbweltzen</u> / vnd kan keinen schlaff in meine augen bringen
 - '... I have to turn around and cannot bring sleep into my eyes.'
 - later: Kinadon wollte den Staat <u>umwälzen</u> ...

 'Kinadon wanted to revolutionize the state ...'
- (i) creates polysemy
- (ii) often results in more abstract or **general** meanings
- \rightarrow assumption: (i) and (ii) imply extension and dispersion in the range of linguistic contexts

Corpus

- Deutsches Textarchiv (erweitert) (DTA)
- ▶ large: provides more than 2447 lemmatized and POS-tagged texts (with more than 140M tokens)
- covers long time period: late 15th to the early 20th century
- balanced: includes literary and scientific texts as well as functional writings

Word Entropy

- corresponds to entropy of word vector
- is assumed to reflect semantic generality in hypernym detection
- is given by

$$H(C) = -\sum_{i=1}^{n} P(c_i \mid w) \log_2 P(c_i \mid w)$$

where $P(c_i \mid w)$ is the occurrence probability of context word c_i given target word w

measures the unpredictability of w's co-occurrences

Evaluation

- no standard test set of semantic or metaphoric change
- we create a small but first test set via annotation (28 items)
- annotators judged 560 context pairs for a metaphorical relation

Workflow:

- (i) preselect 14 changing words
- (ii) add 14 stable distractors
- (iii) identify a date of change
- (iv) extract 20 contexts for each target from before and after date of change
- (v) for each word combine contexts between time periods randomly
- (vi) annotation of context pairs

Annotation

- steps to identify metaphoric relation of C1 to C2:
 - 1. Does any of these hold?:
 - ► C1 is less concrete than C2
 - ▶ C1 is less human-oriented than C2
 - C1 is not related to bodily action in contrast to C2
 - ► C1 is less precise than C2
 - 2. if yes: does C1 contrast with C2 but can be understood in comparison with it?
- **agreement**: κ (Fleiss' Kappa) between .40 and .46
- result is gold ranking of targets for strength of metaphoric change

Annotation Results

target	POS	type	date	meaning	score
Donnerwetter	N	met	1805	thunderstorm > thunderstorm, blowup	0.78
 Unhöflichkeit 	N	sta	1605	discourtesy	0.1

Table ${\bf 1}$: Sample of test set items ordered by their annotated degree of metaphoric change.

Results

	1700-1800	1800-1900	all
entropy	.64***	.10	.39*
frequency	.29	07	.26

Table 2 : Correlation (ρ) between predicted and gold ranks. Significance is determined with a t-test.

Result Analysis

ausstechen

- 1605: Von einem Bawren / welcher einem Kalbskopff die Augen außstach.
 - 'About a Farmer / who cut out the eyes of a calf's head.'
- 1869: Sie wollen ihre Aufgabe nicht nur lösen, sondern auch elegant, d. h. rasch lösen, um Nebenbuhler <u>auszustechen</u>.
 - 'They not only wanted to solve their task, but also elegantly, i.e., solve it fast, in order to <u>excel</u> rivals.'
 - ▶ gold rank: 12/28, entropy: 13, frequency: 17

Donnerwetter

- 1631: Die Lufft ist heiß / vnd gibt viel Blitzen vnd <u>Donnerwetter</u> ... 'The air is hot / and there are many lightnings and <u>thunderstorms</u> ...'
- 1893: Potz <u>Donnerwetter!</u>
 'Man alive!'
 - ▶ gold rank: 1/28, entropy: 27, frequency: 15

Conclusions

- you can annotate semantic change in a corpus (so do it)
- entropy correlates strongly and significantly with degree of metaphoric change
- frequency correlates moderately, but non-significantly on small data set
- annotation and model are **generalizable** to different types of semantic change

https://github.com/Garrafao/MetaphoricChange