
Coreference in Knowledge Editing 

K e e s  v a n  D e e m t e r  and R i c h a r d  P o w e r  
In format ion  Technology Research Ins t i tu te  (ITRI) 

Universi ty of Brighton,  Lewes Road 
Brighton, BN2 4G J, UK 

Kees .van.Deemter ,Richard.Power@itr i .br ighton.ac .uk 

A b s t r a c t  

This paper briefly outlines the WYSIWYM (What 
You See is What You Meant) approach to 
knowledge editing and focuses on the role of 
coreferring Noun Phrases in the .feedback texts 
that  are generated by a WYSIWYM system and 
which play a key role in this approach. The 
paper pays special attention to the operations 
that a user of a WYSIWYM system can perform 
on feedback texts that contain coreferring Noun 
Phrases and to how they can be supported. 

1 I n t r o d u c t i o n  

1.1 E d i t i n g  k n o w l e d g e  by  WYSIWYM 

WYSIWYM is a method of editing knowledge 
bases in which the user interacts with a feedback 
text generated by a natural language generation 
system (e.g. Power and Scott 1998). The idea 
o f  WYSIWYM editing is to provide an interface 
to a knowledge base that  can be used easily by 
an author who is a domain expert but not nec- 
essarily an expert in knowledge representation. 
The feedback text serves two purposes: it shows 
the knowledge that has already been specified; 
and it shows the options for adding new knowl- 
edge. These options are marked by anchors. By 
clicking on an anchor, the user obtains a pop- 
up menu from which a semantic option can be 
selected. The acronym WYSIWYM stands for 
'What  You See Is What You Meant': a natural 
language text ( 'what you see') presents a knowl- 
edge base that  the author has built by purely 
semantic decisions ( 'what you meant'). 

This method was first implemented in 
DRAFTElZ-II (Power et al, 1998), a re-engineered 
version of DRAFTER (Paris et al, 1995) which 
is designed for use by the technical authors who 
produce software documentation. By interact- 
ing with the feedback text, the author defines a 

procedure for performing a task, e.g. the task 
of saving a document in a word processor. 

When a new knowledge base is created, 
DRAFTER-II assumes that its root will be some 
kind of procedure. A procedure instance is cre- 
ated, and assigned an identifier (for internal use 
only), e.g. p roc l .  The definition of the concept 
p rocedure  specifies that every procedure has 
two attributes: a goal, and a method. The g0al 
must be some kind of action, and the method 
must be a list of actions. This information is 
conveyed to the author through a feedback text 

Achieve th i s  goal  by applying this 
method. 

with several special features. 

• Undefined attributes are shown 
through anchors marked by the use of 
boldface or italics. 

• A bo ld face  anchor indicates that  the 
attribute is obligatory: its value must 
be specified. An italicized anchor indi- 
cates that the attribute is optional. 

• All anchors are mouse-sensitive. By 
clicking on an anchor, the author ob- 
tains a pop-up menu listing the per- 
missible values of the attribute; by se- 
lecting one of these options, the author 
updates the knowledge base. 

Although the anchors may be tackled in any 
order, we will assume that the author proceeds 
from left to right. Clicking on th i s  goal  yields 
a pop-up menu that lists all the types of actions 
that  the system knows about: 

choose 
click 

save 
schedule 

56 



(to save space, some options are omitted), from 
which the author selects 'save'. Although ap- 
parently selecting a word, the author is really 
selecting an option for editing the knowledge 
base. The program responds by creating a new 
instance, of type save, and adding it to the 
knowledge base as the value of the goal  at- 
tr ibute on p roc l :  

p rocedure  ( p r o c l ) .  
g o a l ( p r o c l ,  s a v e l ) .  

save (savel). 

From the updated knowledge base, the genera- 
tor produces a new feedback text 

Save th is  d a t a  by applying this 
method. 

including an anchor representing the undefined 
a c t e e  attribute on the s ave l  instance. Note 
that  this text has been completely regenerated. 
It was not produced from the previous text 
merely by replacing the anchor th is  goal  by 
a longer string. By continuing to make choices 
at anchors, the author might expand the knowl- 
edge base in the following sequence: 

• Save the document by applying this 
method. 

• Save the document by performing th is  
a c t i on  (further actions). 

• Save the document by clicking on th is  
o b j e c t  (further actions). 

• Save the document by clicking on the 
button with th is  labe l  (further ac- 
tions). 

• Save the document by clicking on the 
Save button (further actions). 

At this point the knowledge base is potentially 
complete (no boldface anchors remain), so an 
output text can be generated and incorporated 
into the software manual. 

To save the document,  click on the 
Save button. 

To delete information, the author opens a pop- 
up menu on any span of the feedback text that 
presents a defined attribute. For instance, the 
span 'the document '  presents the a c t e e  at- 
tribute on the instance save l .  Clicking on this 
span in the feedback text, the author obtains 
the menu 

If 'Cut'  is selected, the instance that  is currently 
the value of the a c t e e  at tr ibute is removed to 
a buffer, leaving the at tr ibute undefined. The 
resulting feedback text introduces an anchor in 
place of 'the document' .  

Save th is  d a t a  by clicking on the Save 
button (further actions). 

When the buffer is full, the pop-up menus that 
open on anchors contain a 'Paste'  option if the 
instance in the buffer is a suitable value for the 
relevant attribute. 

1.2 L i m i t a t i o n s  of  DI:tAFTER-II 

In the DRAFTER-II implementation of 
WYISYWM, the at tr ibute value that  is added 
at an anchor is always a new instance of the 
specified concept, never an existing instance. 
Suppose the author has developed the feedback 
text 

Save the document by entering the 
name of th is  o b j e c t  (.further actions). 

while aiming at the output text 

To save the document, enter its name 
and click on the Save button. 

The current (incomplete) state of the knowledge 
base is 

p rocedure  (proc 1) .  
g o a l ( p r o c l ,  s a v e l ) .  

save (save 1).  
a c t e e ( s a v e l ,  d o c l ) .  

document ( d o c l ) .  
method(procl, listl). 

list (list ~). 
first(listl, enterl). 

enter (enterl). 
actee(enterl, namel). 

name (name I). 

The author now expands the anchor this ob- 
ject, which marks the owner at tr ibute on 
namel. This can be done in two ways: open- 
ing a pop-up menu on the anchor and choosing 
'document' ,  or choosing 'Copy' on the earlier 
phrase 'the document '  and pasting the copied 
material on to the anchor. In either case, the 

57 



current implementation creates a new instance 
doc2 of the concept document instead of using 
the existing instance docl.  In other words, it 
adds the two assertions 

owner(namel, doc2). 
document (doc2). 

instead of the single assertion 

owner(namel, docl). 

Our aim in this paper is to outline a way of 
overcoming this limitation, so that the author 
will be able to specify whether two similar de- 
scriptions are coreferential. 

2 WYSlWYM + indices 

How can a feedback text indicate coreference? 
One possibility is to let feedback texts make use 
of anaphoric Noun Phrases, such as St' or %his 
document'. In this paper we will assume that 
although output texts, which are meant to be 
read by a user who is not a domain expert, are 
expressions of some natural language, ,feedback 
texts may sometimes include artificial elements 
if this is necessary to avoid ambiguity. We will 
explore how the feedback language may be ex- 
tended by the use of referential indices: If two 
NPs have the same index, they must have the 
same referent, whereas if they have different in- 
dices, they may or may not have the same refer- 
ent. Brackets can be added to disambiguate the 
scope of indices in complex nominals. For ex- 
ample, the new feedback language can contain 
such expressions as 

(the name of (the document)3h and 
(the date of (the document)3)2, 

where the indices imply that the documents in 
the two expressions are the same. In the re- 
mainder of this section, we will explore in what 
different ways an author may want to control 
the indices in the feedback text when she in- 
serts a new instance into the knowledge base, 
or when she cuts or copies an instance from the 
knowledge base. 

2.1 W h i c h  opt ions  for edi t ing  

2.1.1 Inse r t ing  
Imagine the author wants to expand an an- 
chor of the form 'this object', specifying that 
it is a document. Imagine, furthermore, that 

two other documents have already appeared 
in the feedback text, namely (document)l and 
(document)2. Then the newly introduced ob- 
ject may corefer with (document)l or with 
(document)2 or with neither. In order to avoid 
asking potentially superfluous questions, the 
system can first present the user with a menu 
containing the two options 

I Existing object? 
New object? ] 

Only in case of the first choice will the system 
follow up with the menu 

I (document)l? 
(document)2? I 

In case of the second choice, the system will 
replace the anchor by some expression of the 
form (document)/, where i is a new index. 

2.1.2 Cu t t i ng  
In the current version of DRAFTER, cutting is 
a conceptually simple operation that does not 
allow variations: an attribute value is replaced 
by its anchor. When coreference enters the pic- 
ture, this is no longer the case. In particular, 
there are two questions that we have to address 
when an indexed NP is cut (as we will say by 
an obvious extension of usage of the word 'cut'). 
Firstly, Does the author intend to cut this NP  
alone, or does she intend to cut all NPs with the 
same index as this NP? Secondly, if the author 
intends to cut all expressions with the same in- 
dex, then Does the author intend the system to 
respect the indices? In other words, does she as- 
sume that the anchors that will result when the 
NP is de-selected must all be filled by NPs that 
have the same index? Depending on how these 
questions are answered, three different variants 
of the Cut operation arise. Let al be the NP on 
which the author has clicked. Then 

Cut-one only affects this occurrence of 
O~ i • 

Cut-all affects all occurrences of ai, 
also severing all coreference links be- 
tween their anchors. 
Cut-all c affects all occurrences of ai, 
respecting all coreference links be- 
tween their anchors. 

Consider the example in Section 1.2, adapted 
to the situation where docl is the value of two 

58 



different attributes: 

p r o c e d u r e ( p r o c l ) .  
g o a l ( p r o c l ,  s a v e l ) .  

s a v e ( s a v e l ) .  
a c t e e ( s a v e l ,  d o c l ) .  

documen t (doc l ) .  
method(procl, listl). 

list(listl). 
first(list1, enter1). 

enter(enter1). 
actee(enterl, namel). 

name(namel). 
owner(name1, docl). 

To spell out the effect of the new operations, it 
will be convenient to use variables. If Cut-one is 
applied to the occurrence of docl  in the owner 
at tr ibute then the only effect on the content of 
the knowledge base is that the owner of namel 
is undefined, which may be represented by a 
variable, say x. If, instead, Cut-all is applied to 
the same instance of docl ,  then both the owner 
ofnamel  and the a c t e e  of save1 are undefined, 
which may be represented by using two different 
variables, say x and y. If, finally, Cut-all c is 
applied then, once more, both are undefined, 
but their values must be equal. This may be 
represented by using the same variable, say x, in 
both cases: actee(savel, x), owner(namel, 
x). 

2.1.3 C o p y i n g  

Like cutting, copying allows variations now that 
the knowledge base can use one and the same 
instance (e.g., docl )  as the value of differ- 
ent attributes (e.g. a c t e e ( s a v e l ,  doc l )  and 
owner(namel ,  d o c l ) ) ) .  There are at least two 
options. One option amounts to a faithful copy 
of an instance. This option can be imple- 
mented simply by letting a buffer point to the 
instance that  is copied. The other option (called 
Replicate) duplicates the original feedback text, 
while renumbering all the indices in such a way 
that  all the indices in the replica are new, re- 
specting equalities between indices in the orig- 
ina/. The second option arises when an author 
wants to reuse a part  of the feedback text to re- 
fer to a new instance. Both editing operations 
are relatively straightforward to understand and 
implement. 

2.2 E x a m p l e  
Imagine an author wanting to create the proce- 
dure given in Section 2.1.2, starting out with the 
incomplete representation presented in Section 
1.2, where it is not yet specified what namel is 
the name of. The content of the knowledge base 
can be reflected by the feedback text 

Save document /by  entering the name 
of this  o b j e c t  (further actions), 

where i is an arbitrary number. Suppose the au- 
thor opens a pop-up menu on the anchor 'this 
object'  and chooses the option 'Existing object'. 
Note that, owing to some obvious type con- 
straints, the only instance in the existing knowl- 
edge base that can take the place of 'this object '  
is the object docl .  Consequently, there is no 
need for the system to ask further questions. 

A slightly more round-about way in which the 
same potentially complete knowledge base can 
come about is as follows. Confronted with the 
just-presented menu, she decides to choose 'New 
object'. The system then adds the statements 

ovner (namel, doe-j). 
document (doc-j). 

to the knowledge base, where doc-j is a con- 
stant that has not occurred before. The follow- 
ing feedback text may be generated: 

Save document /by  entering the name 
of documentj (further actions). 

Seeing her mistake, the author can then click 
on either 'document/ '  or ' d o c u m e n t / a n d  select 
Cut. This will cause the NP in question to be re- 
placed by the anchor 'this object', which brings 
the author back to a situation where she can 
decide that the two documents should corefer 
after all. 

3 S o m e  p r o b l e m s  

3.1 L i m i t a t i o n s  o f  t h e  use  o f  ind ices  

Indices can be used to indicate, for two text 
spans, whether or not they are assumed, by the 
author, to refer to the same thing. This implies 
a number of problems familiar from the problem 
of tagging text corpora (e.g. Hirschman et al. 
1997). Thus, it is unclear how indices should be 
used in relation to NPs occurring in intensional 
contexts. For example, it seems that  the brack- 
eted NPs in the following feedback text should 

59 



receive different indices, even though their ex- 
tension is equal: 

Make sure that (the date of the pro- 
gram) equals (the current date). 

Furthermore, it can be tempting to view an NP 
as anaphoric, even if it is impossible to name 
any one text span as its antecedent. For ex- 
ample, this happens when the role of an an- 
tecedent is played by a combination of several 
NPs (e.g., the NP 'a file' and the NP 'a pro- 
gram' can together form the antecedent of the 
plural pronoun 'they') or when the antecedent 
is implied, rather than directly mentioned, by 
the text (e.g., in the case of bridging anaphora). 
In these cases, it is difficult to see how indices 
can be used. Note, however, that the problem- 
atic phenomena mentioned here may not pose 
a serious problem in the context of the present 
work, since we axe dealing with the construc- 
tion of feedback texts (as opposed, for example, 
to the output texts generated by the system) 
which tend to make a simplified use of language. 
(cf. Section 2). 

3.2 E m b e d d e d  N P s  

Suppose that the author has reached the follow- 
ing feedback text 

Save (the document)l by entering (the 
name of (the document)l)2 and enter- 
ing (the name of (the document)l)2 
(.further actions). 

with the intention of changing the second occur- 
rence of 'document'  into 'directory'. To avoid 
removing both occurrences of 'the document'  
she chooses the Cut-one option rather than Cut- 
all. 

Save (the document)l by entering (the 
name of (the document)l)2 and enter- 
ing (the name of th is  object)2 (fur- 
ther actions). 

Now she clicks on the anchor th is  ob jec t  and 
chooses 'directory'. What effect should this op- 
eration have on the noun phrase in which the 
anchor is embedded? There are two possibil- 
ities. Either the index of the embedding NP 
should remain the same: 

(the name of (the directory)3)2 

or it should change, implying that  the two 
names are distinct: 

(the name of (the directory)3)4 

In this example, it seems clear that a name can 
belong only to one object, so that the latter 
result should be preferred. However, in some 
cases the index on the embedding phrase might 
plausibly remain the same after the embedded 
phrase has been changed. For instance, if we 
copy 'the menu containing the Save option', 
then cut 'the Save option' from the second oc- 
currence of the phrase, replacing it by 'the Print 
option', there is no reason why the Save and 
Print options should not belong to the same 
menu. Thus to react appropriately to the Cut- 
one operation, the system may have to apply 
domain knowledge or seek guidance from the 
author. 

4 C o n c l u s i o n  

An experimental version of the ideas in this pa- 
per has been implemented in the DRAFTER-III 
system.  DRAFTER-III offers the user the pos- 
sibility of having coreference indicated either 
by indices, or by (colour-based) highlighting, or 
both. In future research, we plan to extend the 
coverage of the system (e.g., by allowing differ- 
ent kinds of anaphoric expressions) and to im- 
prove the transparency of the interface for the 
knowledge editor (i.e., for the author). 

5 R e f e r e n c e s  
Helm 1982. Heim, I. The Semantic of Definite and In- 
definite Noun Phrases. Ph.D. thesis, Univ. of Mas- 
sachusets, Amherst, Mass. 

Hirschman et al. 1997. Hirschman, L.,Robinson, P., 
Burger, J., and Vilain, M., Automating Coreference: 
The Role of Annotated Training Data. Proc. AAAI 
1997. :' 

Paris et al 1995. Paris, C., Vander Linden, K., Fischer, 
M., Hartley, A., Pemberton, L., Power, R. and Scott, D. 
'A Support Tool for Writing Multilingual Instructions' 
Proceedings of IJCAI-95, 1398-1404, Montreal. 

Power and Scott 1998. Power, R. and Scott, D. 'Mul- 
tilingual Authoring using Feedback Texts', Proceedings 
of the 17th International Conference on Computational 
Linguistics and 36th Annual Meeting of the Association 
for Computational Linguistics (COLING-ACL 98), Mon- 
treal, Canada. 

60 


