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Abstract

We present an analysis into the inner workings
of Convolutional Neural Networks (CNNs) for
processing text. CNNs used for computer vi-
sion can be interpreted by projecting filters
into image space, but for discrete sequence in-
puts CNNs remain a mystery. We aim to un-
derstand the method by which the networks
process and classify text. We examine com-
mon hypotheses to this problem: that filters,
accompanied by global max-pooling, serve as
ngram detectors. We show that filters may
capture several different semantic classes of
ngrams by using different activation patterns,
and that global max-pooling induces behav-
ior which separates important ngrams from the
rest. Finally, we show practical use cases de-
rived from our findings in the form of model
interpretability (explaining a trained model by
deriving a concrete identity for each filter,
bridging the gap between visualization tools
in vision tasks and NLP) and prediction inter-
pretability (explaining predictions).

1 Introduction

Convolutional Neural Networks (CNNs), origi-
nally invented for computer vision, have been
shown to achieve strong performance on text clas-
sification tasks (Bai et al., 2018; Kalchbrenner
et al., 2014; Wang et al., 2015; Zhang et al.,
2015; Johnson and Zhang, 2015; Iyyer et al.,
2015) as well as other traditional Natural Lan-
guage Processing (NLP) tasks (Collobert et al.,
2011), even when considering relatively simple
one-layer models (Kim, 2014).

As with other architectures of neural networks,
explaining the learned functionality of CNNs is
still an active research area. The ability to inter-
pret neural models can be used to increase trust in
model predictions, analyze errors or improve the
model (Ribeiro et al., 2016). The problem of inter-
pretability in machine learning can be divided into

two concrete tasks: Given a trained model, model
interpretability aims to supply a structured expla-
nation which captures what the model has learned.
Given a trained model and a single example, pre-
diction interpretability aims to explain how the
model arrived at its prediction. These can be fur-
ther divided into white-box and black-box tech-
niques. While recent works have begun to sup-
ply the means of interpreting predictions (Alvarez-
Melis and Jaakkola, 2017; Lei et al., 2016; Guo
et al., 2018), interpreting neural NLP models re-
mains an under-explored area.

Accompanying their rising popularity, CNNs
have seen multiple advances in interpretability
when used for computer vision tasks (Zeiler and
Fergus, 2014). These techniques unfortunately do
not trivially apply to discrete sequences, as they
assume a continuous input space used to represent
images. Intuitions about how CNNs work on an
abstract level also may not carry over from image
inputs to text—for example, pooling in CNNs has
been used to induce deformation invariance (Le-
Cun et al., 1998, 2015), which is likely different
than the role it has when processing text.

In this work, we examine and attempt to under-
stand how CNNs process text, and then use this in-
formation for the more practical goals of improv-
ing model-level and prediction-level explanations.

We identify and refine current intuitions as to
how CNNs work. Specifically, current common
wisdom suggests that CNNs classify text by work-
ing through the following steps (Goldberg, 2016):

1) 1-dimensional convolving filters are used as
ngram detectors, each filter specializing in a
closely-related family of ngrams.

2) Max-pooling over time extracts the relevant
ngrams for making a decision.

3) The rest of the network classifies the text
based on this information.
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We refine items 1 and 2 and show that:

• Max-pooling induces a thresholding behav-
ior, and values below a given threshold are
ignored when (i.e. irrelevant to) making a
prediction. Specifically, we show an exper-
iment for which 40% of the pooled ngrams
on average can be dropped with no loss of
performance (Section 4).

• Filters are not homogeneous, i.e. a single fil-
ter can, and often does, detect multiple dis-
tinctly different families of ngrams (Section
5.3).

• Filters also detect negative items in ngrams—
they not only select for a family of ngrams
but often actively suppress a related family
of negated ngrams (Section 5.4).

We also show that the filters are trained to work
with naturally-occurring ngrams, and can be eas-
ily misled (made to produce values substantially
larger than their expected range) by selected non-
natural ngrams.

These findings can be used for improving
model-level and prediction-level interpretability
(Section 6). Concretely: 1) We improve model
interpretability by deriving a useful summary for
each filter, highlighting the kinds of structures it
is sensitive to. 2) We improve prediction inter-
pretability by focusing on informative ngrams and
taking into account also the negative cues.

2 Background: 1D Text Convolutions

We focus on the task of text classification. We con-
sider the common architecture in which each word
in a document is represented as an embedding vec-
tor, a single convolutional layer with m filters is
applied, producing an m-dimensional vector for
each document ngram. The vectors are combined
using max-pooling followed by a ReLU activation.
The result is then passed to a linear layer for the fi-
nal classification.

For an n-words input text w1, ..., wn we embed
each symbol as d dimensional vector, resulting in
word vectors w1, ...,wn ∈ Rd. The resulting d×n
matrix is then fed into a convolutional layer where
we pass a sliding window over the text. For each
l-words ngram:

ui = [wi, ...,wi+`−1] ∈ Rd×` ; 0 ≤ i ≤ n− `

And for each filter fj ∈ Rd×` we calcu-
late 〈ui, fj〉. The convolution results in matrix

F ∈ Rn×m. Applying max-pooling across the
ngram dimension results in p ∈ Rm which is fed
into ReLU non-linearity. Finally, a linear fully-
connected layer W ∈ Rc×m produces the distri-
bution over classification classes from which the
strongest class is outputted. Formally:

ui = [wi; ...;wi+`−1]

Fij = 〈ui, fj〉
pj = ReLU(max

i
Fij)

o = softmax(Wp)

In practice, we use multiple window sizes ` ∈ L,
L ( N by using multiple convolution layers in
parallel and concatenating the resulting p` vectors.
We note that the methods in this work are applica-
ble for dilated convolutions as well.

3 Datasets and Hyperparameters

For our empirical experiments and results pre-
sented in this work we use three text classifica-
tion datasets for Sentiment Analysis, which in-
volves classifying the input text (user reviews in
all cases) between positive and negative. The spe-
cific datasets were chosen for their relative variety
in size and domain as well as for the relative sim-
plicity and interpretability of the binary sentiment
analysis task.

The three datasets are: a) MR: sentence polarity
dataset v1.0 introduced by Pang and Lee (2005),
containing 10k evenly split short (sentences or
snippets) movie reviews. b) Elec: electronic prod-
uct reviews for sentiment classification introduced
by Johnson and Zhang (2015), assembled from the
Amazon review dataset (McAuley and Leskovec,
2013; McAuley et al., 2015), containing 200k train
and 25k test evenly split reviews. c) Yelp Review
Polarity: introduced by Zhang et al. (2015) from
the Yelp Dataset Challenge 2015, containing 560k
train and 38k test evenly split business reviews.

For word embeddings, we use the pre-trained
GloVe Wikipedia 2014—Gigaword 5 embeddings
(Pennington et al., 2014), which we fine-tune with
the model.

We use embedding dimension of 50, filter sizes
of ` ∈ {2, 3, 4} words, and m ∈ {10, 50} filters.
Models are implemented in PyTorch and trained
with the Adam optimizer.
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4 Identifying Important Features

Current common wisdom posits that filters serve
as ngram detectors: each filter searches for a spe-
cific class of ngrams, which it marks by assigning
them high scores. These highest-scoring detected
ngrams survive the max-pooling operation. The fi-
nal decision is then based on the set of ngrams in
the max-pooled vector (represented by the set of
corresponding filters). Intuitively, ngrams which
any filter scores highly (relative to how it scores
other ngrams) are ngrams which are highly rele-
vant for the classification of the text.

In this section we refine this view by attempting
to answer the questions: what information about
ngrams is captured in the max-pooled vector, and
how is it used for the final classification?1

4.1 Informative vs. Uninformative Ngrams
Consider the pooled vector p ∈ Rm on which
the classification is based. Each value pj =
ReLU(maxi〈ui, fj〉) stems from a filter-ngram in-
teraction, and can be traced back to the ngram
ui = [wi, ...,wi+`−1] that triggered it. Denote the
set of ngrams contributing to p as Sp. Ngrams not
in Sp do not influence the decision of the classifier.
But what about the ngrams that are in Sp? Previ-
ous attempts in prediction-based interpretation of
CNNs for text highlight the ngrams in Sp and their
scores as means of explaining the prediction. We
take here a more refined view. Note that the final
classification does not observe the ngram identi-
ties directly, but only through the scores assigned
to them by the filters. Hence, the information in p
must rely on the assigned scores.

Conceptually, we separate ngrams in Sp into
two classes, deliberate and accidental.
Deliberate ngrams end up in Sp because they
were scored high by their filter, likely because they
are informative regarding the final decision. In
contrast, accidental ngrams end up in Sp despite
having a low score, because no other ngram scored
higher than them. These ngrams are likely not in-
formative for the classification decision. Can we
tease apart the deliberate and accidental ngrams?

1Although this work focuses on text classification, the
findings in this section apply to any neural architecture which
utilizes global max pooling, for both discrete and continuous
domains. To our knowledge this is the first work that exam-
ines the assumption that max-pooling induces classifying be-
havior. Previously, Ruderman et al. (2018) showed that other
assumptions to the functionality of max-pooling as deforma-
tion stabilizers (relevant only in continuous domains) do not
necessarily hold true.

We assume that there is threshold for each filter,
where values above the threshold signal informa-
tive information regarding the classification, while
values below the threshold are uninformative and
can be ignored for the purpose of classification.
We thus search for the threshold that separate the
two classes. However, as we cannot measure di-
rectly which values pj influence the final decision,
we opt instead for measuring correlation between
pj values and the predicted label for the vector p.

The linearity of the decision function Wp al-
lows to measure exactly how much pj is weighted
for the logit of label class k. The class which filter
fj contributes to is cj = argmaxk Wkj

2. We refer
to class cj as the class identity of filter fj .

By assigning each filter a class identity cj and
comparing it to the predicted label we arrive at
a correlation label—whether the filter’s identity
class matches the final decision by the network.
Concretely, we run the classifier over a set of texts,
resulting in pooled vectors pi and network predic-
tions ci. For each filter j we then consider the val-
ues pi

j and whether ci = cj . For each filter, we
obtain a dataset (p1j , c

1 = cj), ..., (p
D
j , c

D = cj),
and we look for a threshold tj that separates pij for
which ci = cj from those where ci 6= cj .

(X,Y )j = {(pij , ci = cj) | j < m & i < D}

In an ideal case, the set is linearly separable
and we can easily separate informative from un-
informative values: if pij > tj then the classifier’s
prediction agrees with the filter’s label, and oth-
erwise they disagree. In practice, the set is not
separable. We instead work with the purity of a
filter-threshold combination, defined as the per-
centage of informative (correlative) ngrams which
were scored above the threshold3. Formally, given
threshold dataset (X,Y ):

purity(f, t) =

|{(x, y) ∈ (X,Y )f | x ≥ t & y = true}|
|{(x, y) ∈ (X,Y )f | x ≥ t}|

We heuristically set the threshold of a filter to
the lowest value that achieves a sufficiently high

2In the case of non-linear fully-connected layers, the
question of how each feature contributes to each class is
significantly harder to answer. Possible methods include
saliency map methods or gradient-based methods. Re-
cently, Guo et al. (2018) has attributed labels to filters using
Bayesian inference and other image annotations.

3The purity metric can be considered as the precision met-
ric for this task.
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purity (we experimentally find that a purity value
of 0.75 works well).

In Figure 2b,c we show examples for threshold
datasets for a model trained on the MR sentiment
analysis task.

Threshold Effectiveness We described a
method for obtaining per-filter threshold values.
But is the threshold assumption—that items
below a given threshold do not participate in the
decision—even correct? To assess the quality of
threshold obtained by our proposal and validate
the thresholding assumption, we discard values
that do not pass the threshold for each filter and
observe the performance of the model. Practi-
cally, we replace the ReLU non-linearity with a
threshold function:

threshold(x, t) =

{
x, if x ≥ t

0, otherwise

Figure 1 presents the results on the MR dataset
(we observed similar results on the Elec dataset).
where the threshold is set for each filter separately,
based on a shared purity value. If the threshold-
ing assumption is correct and our way of deriv-
ing the threshold is effective, we expect to not see
a drop in accuracy. Indeed, for purity value of
0.75, we observe that the model performance im-
proves slightly when replacing the ReLU with a
per-filter threshold, indicating that the threshold-
ing model is indeed a good approximation for the
feature behavior. The percentage of informative
(non-accidental) values in p is roughly a linear
function of the purity (Figure 1c). With a purity
value of 0.754, we discard roughly 44% of the val-
ues in p—and hence 44% of the ngrams in Sp.

Not all filters behave in a similar way, however.
In Figure 2 we show an example for a filter—#6
in the figure—which is especially uninformative:
by applying the lowest threshold which satisfies a
purity of 0.75, we discard 99.99% of activations.
Therefore in the experiments in Figure 1, this filter
is effectively unused, yet it does not cause loss in
performance. In essence, the threshold classifier

4We note that empirically and intuitively, the more filters
we utilize in the network, the less correlation there is between
each filter’s class and the final classification, as the decision is
being made by a greater consensus. This means that demand-
ing a higher purity will be accompanied by lower coverage,
relative to other experiments, and more ngrams will be dis-
carded. The “correct” purity level for a filter then is a func-
tion of the model and dataset used, and should be investigated
using the train or validation datasets.

identified and effectively discarded a filter which
is not useful to the model.

To summarize, we validated our assumptions
and shown empirically that global max-pooling in-
deed induces a functionality of separating impor-
tant and not important activation signals using a
latent (presumably soft) threshold. For the rest of
this work we will assume a known threshold value
for every filter in the model which we can use to
identify important ngrams.

5 What is captured by a filter?

Previous work looked at the top-k scoring ngrams
for each filter. However, focusing on the top-k
does not tell a complete story. We insead look at
the set of deliberate ngrams: those that pass the fil-
ter’s threshold value. Common intuition suggests
that each filter is homogeneous and specializes in
detecting a specific classes of ngrams. For exam-
ple, a filter may specializing in detecting ngrams
such as “had no issues”, “had zero issues”, and
“had no problems”. We challenge this view and
show that filters often specialize in multiple dis-
tinctly different semantic classes by utilizing ac-
tivation patterns which are not necessarily max-
imized. We also show that filters may not only
identify good ngrams, but may also actively su-
press bad ones.

5.1 Slot Activation Vectors

As discussed in Section 2, for each ngram u =
[w1, ...,w`] and for each filter f we calculate the
score 〈u, f〉. The ngram score can be decomposed
as a sum of individual word scores by considering
the inner products between every word embedding
wi in u and every parallel slice in f :

〈u, f〉 =
`−1∑
i=0

〈wi, fid:i(d+1)〉

We refer to slice fid:i(d+1) as slot i of the fil-
ter weights, denoted as f(i). Instead of taking the
sum of these inner products, we can instead inter-
pret them directly—saying that 〈wi, f(i)〉 captures
how much slot i in f is activated by the ith word
in the ngram5.

We can now move from examining the
activation of an ngram-filter pair 〈u :=
[w1; ...;w`], f〉 to examining its slot activation
vector: (〈w1, f(1)〉, ..., 〈w`, f(`)〉). The slot ac-



60

(a)

0.0 0.2 0.4 0.6 0.8
purity

0.00475

0.00500

0.00525

0.00550

0.00575
tra

in
 lo

ss
(b)

0.0 0.2 0.4 0.6 0.8
purity

0.745
0.750
0.755
0.760
0.765
0.770

te
st

 a
cc

ur
ac

y

(c)

0.5 0.6 0.7 0.8 0.9
purity

40

60

80

100

av
er

ag
e 

n-
gr

am
 c

ov
er

ag
e

Figure 1: Evaluation results for identifying important ngrams on the MR model.
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Figure 2: Visualization of informative and uninformative filters for the MR model and a universal purity of 0.75.
In (a) we show the percentage of pooled ngrams which pass the threshold per filter. The threshold datasets of filters
#0 and #6 are shown in (b) and (c) respectively.

tivation vector captures how much each word in
the ngram contributes to its activation.

5.2 Naturally occurring vs. possible ngrams

We distinguish naturally occurring or observed
ngrams, which are ngrams that are observed in a
large corpus, from possible ngrams which are any
combination of ` words from the vocabulary. The
possible ngrams are a superset of the naturally oc-
curring ones. Given a filter, we can find its top-
scoring naturally occurring ngram by searching
over all ngrams in a corpus. We can find its top-
scoring possible ngram by maximizing each slot
value individually. We observe there is a big and
consistent gap in scores between the top-scoring
natural ngrams and top-scoring possible ngrams.
In our Elec model, when averaging over all filters,
the top naturally-occurring ngrams score 30% less
than the top possible ngrams. Interestingly, the

5 We note that this breakdown does not consider the fil-
ter’s bias, if one is used. This bias is a single number (per
filter) which is added to the sum of slot activations to arrive
at the ngram activation which is passed to the max-pooling
layer. Bias can be accommodated by appending an additional
“bias word” with an embedding vector of [1, ..., 1] to every
ngram. Regardless, as this bias is identical for all ngrams
for the filter in question, it has no role in identifying which
ngrams the filter is most similar to, and we can ignore it in
this context.

top-scoring natural ngrams almost never fully ac-
tivate all slots in a filter.

Table 1 shows the top-scoring naturally occur-
ring and possible ngrams for nine filters in the Elec
model. In each of the top scoring natural ngrams,
at least one slot receives a low activation. Table 2
zooms in on one of the filters and shows its top-
7 naturally occurring ngrams and top-7 most acti-
vated words in each slot. Here, most top-scoring
ngrams maximize slot #3 with words such as in-
valuable and perfect, however some ngrams such
as “works as good” and “still holding strong” max-
imize slots #1 and #2 respectively, instead.

Additionally, most top-scoring words do not ap-
pear to be utilized in high-scoring ngrams at all.
This can be explained with the following: if a
word such as crt rarely or never appears in slot #1
alongside other high-scoring words in other slots,
then crt can score highly with no consequence.
Since an ngram containing crt at slot #1 will rarely
pass the max-pooling layer, its score at that slot is
essentially random.

On naturally occurring ngrams, the filters do not
achieve maximum values in all slots but only on
some of them. Why? We consider two hypotheses
to explain this behavior:
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top ngrams top words by slot
filter ngram score slot scores slot #1 slot #2 slot #3 sum

0 poorly designed junk 7.31 5.47 0.97 0.87 poorly 5.47 displaying 3.06 landfill 1.75 10.28
1 simply would not 5.75 2.16 1.28 2.3 chapters 2.31 avoid 3.07 impossible 3.06 8.44
2 a minor drawback 6.11 0.88 1.85 3.38 workstation 2.06 high-quality 3.82 drawback 3.39 9.27
3 still working perfect 6.42 1.58 1.22 3.62 saves 2.52 delight 2.29 invaluable 4.19 9.0
4 absolutely gorgeous . 5.36 1.09 3.84 0.42 complain 2.57 gorgeous 3.84 expect 1.22 7.63
5 one little hitch 5.72 0.98 3.43 1.31 path 2.81 delight 4.09 everyday 2.64 9.54
6 utterly useless . 6.33 2.03 3.49 0.81 stopped 2.77 refund 3.81 disabled 1.38 7.96
7 deserves four stars 5.56 0.44 1.69 3.44 excelente 1.89 crossover 1.93 incredible 3.96 7.78
8 a mediocre product 6.91 0.35 3.11 3.45 began 1.86 mediocre 3.11 product 3.45 8.42

Table 1: Top ngrams and words by filter from a sample of nine filters from the Elec model. The average difference
between the top natural ngram activation and the top possible ngram activation for this model is 2.5, or a 30%
average reduction.

top ngrams
rank ngram score slot scores

1 still working perfect 6.42 1.58 1.22 3.62
2 works - perfect 5.78 1.91 0.25 3.62
3 isolation proves invaluable 5.61 0.39 1.03 4.19
4 still near perfect 5.6 1.58 0.4 3.62
5 still working great 5.45 1.58 1.22 2.65
6 works as good 5.44 1.91 1.45 2.08
7 still holding strong 5.37 1.58 1.81 1.98

top words by slot
slot #1 slot #2 slot #3

saves 2.52 delight 2.29 invaluable 4.19
crt 2.1 holding 1.81 perfect 3.62
beginner 2.09 welcome 1.8 cm 3.61
mics 2.08 dhcp 1.72 pleasant 3.38
genius 2.07 completely 1.64 simplicity 3.14
final 2.01 cradle 1.56 england 3.09
works 1.91 well-made 1.51 daily 3.04

Table 2: Top-k words by slot scores and top-k ngrams by filter scores from the Elec model. In bold are words from
the top-k ngrams which appear in the top-k slot words - i.e. words which maximize their slot.

(i) Each filter captures multiple semantic classes
of ngrams, and each class has some domi-
nating slots and some non-dominating slots
(which we define as a slot activation pattern).

(ii) A slot may not be maximized because it’s not
used to detect word existence, but rather lack
of existence—ensuring that specific words do
not occur.

We investigate both hypotheses in Sections 5.3 and
5.4 respectively.

Adversarial potential We note in passing that
this discrepancy in scores between naturally oc-
curring and possible ngrams can be used to derive
adversarial examples that cause a trained model
to misclassify. By inserting a few seemingly ran-
dom ngrams, we can cause filters to activate be-
yond their expected range, potentially driving the
model to misclassification. We reserve this area of
exploration for future work.

5.3 Clustering (Hypothesis (i))
We explore hypothesis (i) by clustering threshold-
passing (naturally occurring) ngrams in each fil-
ter according to their activation vectors. We use
Mean Shift Clustering (Fukunaga and Hostetler,

1975; Cheng, 1995), an algorithm that does not
require specifying an a-priori number of clusters,
and does not make assumptions about their shapes.
Mean Shift considers the feature vectors as sam-
pled from an underlying probability density func-
tion6. Each cluster captures a different slot activa-
tion pattern. We use the cluster’s centroid as the
prototypical slot activation for that cluster.

Table 3 shows a sample clustering output. The
clustering algorithm identified two clusters: one
primarily containing ngrams of the pattern DET
INTENSITY-ADVERB POSITIVE-WORD, while
the second contains ngrams that begin with
phrases like go wrong.7

The centroids for these clusters capture the acti-
vation patterns well: low-medium-high and high-
high-low for clusters 1 and 2 respectively.

To summarize, by discarding noisy ngrams
which do not pass the filter’s threshold and then
clustering those that remain according to their slot
activation patterns, we arrived at a clearer image

6Intuitively, we can think of the sampling noise as the
ngram embeddings, and the probability distribution as de-
fined by a function of the filter weights.

7In the Yelp dataset, go wrong overwhelmingly occurs in
a negated context such as “can’t go wrong” and “won’t go
wrong”, which explains why it is detected by a positive filter.
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ngram slot #1 slot #2 slot #3 cluster
centroid 0.75 1.97 2.79 1
was super intriguing 1.01 3.16 5.84 1
am so grateful 2.59 3.27 4.07 1
overall very worth 3.84 1.86 4.22 1
also well worth 1.83 3.06 4.22 1
- super compassionate 0.51 3.17 5.01 1
a well oiled 0.75 3.06 4.84 1
centroid 2.87 2.17 0.12 2
go wrong bringing 3.97 4.12 1.81 2
go wrong pairing 3.97 4.12 1.65 2
go wrong when 3.97 4.12 -0.4 2

Table 3: Example clustering results on the Yelp dataset.
After applying thresholds, the ngrams for this filter
were split into two clusters of sizes 83% and 17% re-
spectively. The table shows top-scoring ngrams for this
filter with their clustering results, sorted by their acti-
vation strength.

of the semantic classes of ngrams that a given fil-
ter specializes in capturing. In particular, we re-
veal that filters are not necessarily homogeneous:
a single filter may detect several different seman-
tic patterns, each one of them relying on a different
slot activation pattern.

5.4 Negative Ngrams (Hypothesis (ii))

Our second theory to explain the discrepancy be-
tween the activations of naturally occurring and
possible ngrams is that certain filter slots are not
used to detect a class of highly activating words,
but rather to rule out a class of highly negative
words. We refer to these as negative ngrams.

For example, Table 3 shows an ngram pattern
for which slot #1 contains determiners and other
“filler” tokens such as hyphens, periods and com-
mas with relatively weak slot activations. Hypoth-
esis (ii) suggests that this slot may receive a strong
negative score for words such as not and n’t, caus-
ing such negated patterns to drop below the thresh-
old. Indeed, ngrams containing not or n’t in slot #1
do not pass the threshold for this filter.

We are interested in a more systematic method
of identifying these cases. Identifying negative
slot activations would be very useful for under-
standing the semantics captured by a filter and the
reasoning behind the dismissal of an ngram, as we
discuss in Sections 6.1 and 6.2 respectively.

We achieve this by searching the below-
threshold ngram space for ngrams which are
“flipped versions” of above-threshold ngrams.
Concretely: Given ngram u which was scored
highly by filter f , we search for low-scoring

ngrams u′ such that the hamming distance be-
tween u and u′ is low. By doing this for the top-
k scoring ngrams per cluster, we arrive at a com-
prehensive set of negative ngrams. In Table 4 we
show a sample output of this algorithm.

Furthermore, we can divide negative ngrams
into two cases: 1) Lowering the ngram score be-
low the threshold by replacing high-scoring words
with low-scoring words. 2) Lowering the ngram
score below the threshold by replacing words with
a low positive score with words with a highly-neg-
ative score. Case 2 is more interesting because
it embodies cases where hypothesis (ii) is rele-
vant. Additionally, it highlights ngrams where a
strongly positive word in one slot was negated
with another strongly negative word in another
slot. Table 4 shows examples in bold.

In order to identify “Case 2” negative ngrams,
we heuristically test whether the “changed”
words’ scores directly influence the status of the
activation relative to the threshold: given an al-
ready identified negative ngram, if the ngram
score—sans the bottom-k negative slot activations
(considering a hamming distance of k and given
that there are k negative slot activations)—passes
the threshold, yet it does not pass the threshold
by including the negative slot activations, then the
ngram is considered a “Case 2” negative ngram.

6 Interpretability

In this section we show two practical implica-
tions of the findings above: improvements in both
model-level and prediction-level interpretability
of 1D CNNs for text classification.

6.1 Model Interpretability

As in computer vision, we can now interpret a
trained CNN model by “visualizing” its filters and
interpreting the visible shapes—in other words,
defining a high-level description of what the filter
detects. We propose to associate each filter with
the following items: 1) The class which this fil-
ter’s strong signals contribute to (in the sentiment
task: positive or negative); 2) The threshold value
for the filter, together with its purity and cover-
ages percentages (which essentially capture how
informative this filter is); 3) A list of semantic pat-
terns identified by this filter. Each list item corre-
sponds to a slot-activations cluster. For each clus-
ter we present the top-k ngrams activating it, and
for each ngram we specify its total activation, its
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ngram slot #1 slot #2 slot #3 sum
’m really pleased 2.59 1.86 5.05 9.5
’m really not -2.49 1.96
’m really upset -1.14 3.31
’m not pleased -3.4 4.24
is extremely useful 2.3 3.24 3.96 9.5
is extremely limited -2.8 2.74
is extremely noisy -2.77 2.8
is not useful -3.4 2.86
is only useful -2.82 3.44
is surprisingly good 2.3 4.32 2.8 9.42
is not good -3.4 1.7
is only good -2.82 2.28
is no good -1.88 3.22
is probably good -1.66 3.44
am very satisfied 2.01 2.17 5.09 9.26
am very dissatisfied -1.9 2.27
am very disappointed -1.87 2.3
am not satisfied -3.4 3.69
not very satisfied -2.6 4.66

Table 4: Top-scoring ngrams from one filter from a
model trained on the Elec dataset, and their accompa-
nying lowest-scoring negative ngrams. We selected a
hamming distance of 1 word. Bold ngrams are Case 2
negative ngrams.

slot-activation vector, and its list of bottom-k neg-
ative ngrams with their activations and slot acti-
vations. In particular, by clustering the activated
ngrams according to their slot activation patterns
and showing the top-k in each clusters, we get a
much more refined coverage of the linguistic pat-
terns that are captured by the filter.

6.2 Prediction Interpretability

Previous prediction-based interpretation attempts
traced back the ngrams from the max-pooling
layer. Here we improve these previous attempts
by considering only ngrams that pass the threshold
for their filter. This results in a more concise and
relevant explanation (Figure 1). Figure 3 shows
two examples. Note that in example #1, many
negative-class filters were “forced” to choose an
ngram in max-pooling despite there not being
strongly negative phrases—but those ngrams do
not pass the threshold and are thus cleaned from
the explanation.

Additionally we can use the individual slot ac-
tivations to tease-apart the contribution of each
word in the ngram. Finally, we can also mark
cases of negative-ngrams (Section 5.4), where an
ngram has high slot activations for some words,
but these are negated by a highly-negative slot and

my UNK fits perfectly . very well made . nice looking and
offers good protection
filter f-class ngram slot scores

0 pos PAD PAD my 0.7 1.65 0.16
1 pos . very well 0.98 2.17 2.63
2 neg PAD my UNK 1.31 -0.07 0.21
3 neg UNK fits perfectly 0.28 0.61 0.03
4 neg looking and offers 0.6 0.12 0.5
5 neg good protection PAD 0.52 1.6 -0.01
6 pos UNK fits perfectly -0.06 2.36 1.82
7 neg fits perfectly . 1.34 -0.71 1.47
8 neg . very well -0.01 1.97 -0.55
9 pos perfectly . very 4.13 0.45 -0.01

this product sucked was not loud at all lights did n’t work
overall a bad product that ’s UNK taking up space
filter f-class ngram slot scores

0 pos product sucked was 0.12 2.05 0.1
1 pos overall a bad 2.53 1.4 -1.16
2 neg lights did n’t -0.33 1.12 1.63
3 neg PAD this product -0.2 1.43 0.51
4 neg did n’t work 1.21 0.97 2.65
5 neg sucked was not 0.98 0.59 1.32
6 pos work overall a -0.25 4.05 -0.21
7 neg was not loud -0.33 2.85 0.52
8 neg a bad product -0.45 3.08 1.32
9 pos PAD PAD this 0.38 0.15 1.66

Figure 3: Examples predicted positive and negative
respectively by a model trained on the Elec dataset,
along with their explanations. Ngrams which passed
the threshold are in bold, and case 2 negative ngrams
are in italics. For clarity’s sake we trained a small
model which uses ten filters.

as a consequence are not selected by max-pooling,
or are selected but do not pass the filter’s thresh-
old.

7 Conclusion

We have refined several common wisdom assump-
tions regarding the way in which CNNs process
and classify text. First, we have shown that max-
pooling over time induces a thresholding behavior
on the convolution layer’s output, essentially sep-
arating between features that are relevant to the
final classification and features that are not. We
used this information to identify which ngrams are
important to the classification. We also associate
each filter with the class it contributes to. We de-
compose the ngram score into word-level scores
by treating the convolution of a filter as a sum
of word-level convolutions, allowing us to exam-
ine the word-level composition of the activation.
Specifically, by maximizing the word-level acti-
vations by iterating over the vocabulary, we ob-
served that filters do not maximize activations at
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the word-level, but instead form slot activation
patterns that give different types of ngrams similar
activation strengths. This provides empirical evi-
dence that filters are not homogeneous. By clus-
tering high-scoring ngrams according to their slot-
activation patterns we can identify the groups of
linguistic patterns captured by a filter. We also
show that filters sometimes opt to assign nega-
tive values to certain word activations in order to
cause the ngrams which contain them to receive a
low score despite having otherwise highly activat-
ing words. Finally, we use these findings to sug-
gest improvements to model-based and prediction-
based interpretability of CNNs for text.
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