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Abstract

Sparsity often leads to efficient and inter-
pretable representations for data. In this
paper, we introduce an architecture to in-
fer the appropriate sparsity pattern for the
word embeddings while learning the sen-
tence composition in a deep network. The
proposed approach produces competitive
results in sentiment and topic classifica-
tion tasks with high degree of sparsity.
It is computationally cheaper to compute
sparse word representations than existing
approaches. The imposed sparsity is di-
rectly controlled by the task considered
and leads to more interpretability.

1 Introduction

The recent surge in representation learning has re-
sulted in remarkable advances in a variety of ap-
plications including computer vision and speech
processing. In the context of natural language
processing, much effort has been focused on con-
structing vector space representations for words
through neural language models (Mikolov et al.,
2013; Pennington et al., 2014) and designing ap-
propriate composition functions to apply word
embeddings for modeling sentences or documents.
By design, the goal of neural word embedding ap-
proaches is to build dense vector representations
that capture syntactic and semantic similarities in
data (e.g., beautiful, and attractive have similar
meanings, as opposed to ugly, and repulsive), that
the classic categorical representation of words as
indices of a vocabulary fails to capture.

The composition function based on these em-
beddings can be either unordered (e.g. average
of the word representations) or syntactic, wherein
the word order is explicity modeled (Socher et al.,
2013a; Sutskever et al., 2011; Bowman, 2013).

(a) Original word vectors. (b) Sparsified word vectors.

Figure 1: t-SNE embedding of the sentence repre-
sentations obtained as the average of word vectors
for a random set of 1000 sentences from the SUBJ
dataset.

While the former class of approaches results in
simple architectures that are easily scalable, the
latter can provide richer models with much se-
vere computational complexity during training.
Furthermore, the input word vectors are often
fine-tuned during the training phase to improve
the sentence (or document) classification perfor-
mance. However, this can lead to severe over-
fitting and hence regularization strategies such as
word-dropout are used (Iyyer et al., 2015) and
in other cases the original word vectors are aug-
mented to the input as a static channel (Kim, 2014;
Zhang and Wallace, 2015).

Alternately, approaches that build word repre-
sentations using different forms of regularization
inspired by the linguistic study of word meanings
have been effective in modeling sentences. For ex-
ample, sparsity regularization can be been used to
construct distributed representations (Eisenstein et
al., 2011) that capture some of the crucial lexi-
cal semantics largely based on familiar, discrete
classes (e.g., supersenses) and relations (e.g., syn-
onymy and hypernymy).

Instead of employing sparsity to regularize
word embeddings, we propose to infer appropri-
ate sparsity patterns for pre-learned word vectors
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Figure 2: Sparsity has been commonly used to regularize word embeddings in order to effectively govern
the relationship between word dimensions and provide interpretable representations. Examples include
the approaches in (Yogatama et al., 2015) (left-top) and (Faruqui et al., 2015) (left-bottom). In contrary,
we propose to infer sparsity patterns for pre-learned word embeddings in order to preserve only the key
semantics required for the sentence classification task (right).

to improve the discrimination of sentence repre-
sentations. In particular, we consider a unordered
composition setting, similar to (Iyyer et al., 2015),
wherein the sentence representation is obtained
as the average of the words. Intuitively, spar-
sity is imposed to govern the relationship between
word dimensions to capture only the semantics
crucial to the particular task considered. For ex-
ample, in a sentiment analysis task, opposite re-
lationships between adjectives such as beautiful
and ugly are more important than gender relation-
ships such as king and queen. Surprisingly, with-
out any additional regularization such as word-
dropout or static channel of word vectors, the pro-
posed approach produces competitive results in
sentiment and topic classification tasks with high
degree of sparsity. While it is cheaper to com-
pute sparse word representations than existing ap-
proaches (Faruqui et al., 2015; Yogatama et al.,
2015) the imposed sparsity is not merely based on
the semantics of the space of words, but directly
controlled by the task considered. Furthermore,
by automatically learning sparsity masks that pre-
serve only the semantic relationships appropriate
for the task at hand, the resulting sentence models
are highly discriminative. For example, in Figures
6(a) and 6(b), we show the sentence representa-
tions (word averaging) obtained using the origi-
nal Glove word embeddings and the proposed ap-

Figure 3: Tensorflow architecture for the proposed
approach of sparsifying word embeddings based
on labeled sentence data.

proach.

2 Sparsity in Word Embeddings

Though neural word representations are highly ef-
fective in enabling inference of complex seman-
tic relationships between words, the interpretabil-
ity of the word dimensions themselves is highly
opaque. Hence, there is a disconnect between such
dense representations and the word representa-
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Figure 4: Convergence behavior of the pro-
posed approach on the SUBJ dataset - Both the
%Sparsity of the inferred mask and the testing ac-
curacy are shown. Interestingly, only less than
50% of the entries are retained.

tions typically found in lexical semantics, wherein
each word can be represented sparsely in terms of
an extensive set of discrete classes. For exam-
ple, the word apple can be sparsely represented
in terms of discrete concepts such as fruit, edi-
ble food, red etc. In contrast, learned word rep-
resentations such as the Word2vec produces dense
vectors, where the word dimensions that actually
reveal a particular semantic relationship are not
transparent. This motivated NLP researchers to
explicitly impose sparsity into the word embed-
ding inference. Sparse modeling with an over-
complete set of features is well known to pro-
duce simple, interpretable representations, while
retaining the approximation power of dense mod-
els. Authors in (Andreas and Klein, 2014), use the
creation of a word such as northeast from words
north and east to illustrate that linguistic descrip-
tors orient along a sparse set of perceptual basis.
In the context of nlp tasks, it has been showed that
sparse codes inferred from the pre-learned word
embeddings (Figure 2) are more interpretable and
hence sparsity can be used to govern relationships
between word dimensions (Fyshe et al., 2014;
Faruqui et al., 2015). Since sparsity can reveal the
word dimensions pertinent to specific semantics,
the resulting sparse representations were more ef-
fective in sentence classification. Similarly Chang
et.al. found that sparse word vectors performed
better in the behavioral task used to quantify in-
terpretability (Chang et al., 2009). Furthermore,
in (Yogatama and Smith, 2014), the authors ad-

(a) Average `1 norm per dimension

(b) Average `1 norm for the top 500 words based
with the largest `1 norm in the original word vector
space.

Figure 5: Measuring changes in the original dense
word vectors and word vectors sparsified using
mask inferred from the newswire dataset.

vocate several sparsity based structural regular-
ization schemes as a more suitable inductive bias
and show improvements over dense representa-
tions several NLP tasks. In addition to the inher-
ent computational complexity, an important down-
side of these approaches is that sparsity is merely
used to regularize the word embeddings and hence
cannot directly improve the discrimination of sen-
tence representations constructed using these word
vectors.

A striking similarity between all existing ap-
proaches for learning sparse word embeddings is
that they aim to make the word dimensions cor-
responding to different semantic groups disjoint.
However, given the large range of potential seman-
tic relationships, it becomes computationally chal-
lenging to infer sparse representations that can dis-
criminate all of them. This challenge is even more
severe when word embeddings are applied to NLP
tasks such as sentence classification. This moti-
vates the need to infer the appropriate sparsity pat-
terns for word embeddings such that they can eas-
ily discriminate the semantic concepts crucial for
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Model SST-fine IMDB SUBJ Reuters
CNN-MC (Kim, 2014) 47.4 – 93.2 –
F-Dropout (Wang and Manning, 2013) – 91.1 93.6 –
TreeLSTM (Tai et al., 2015) 50.6 – – –
PVEC (Le and Mikolov, 2014) 48.7 92.6 – –
DAN + Word-Drop (Iyyer et al., 2015) 46.9 89.4 92.4 72.6
DAN + Sparsity-Mask 47.4 91.1 92.9 73.7
DAN + Binary-Mask 47.2 88.7 92.4 72.1

Table 1: Sentence classification performance of the proposed approach in comparison to other meth-
ods. In addition to outperforming the deep averaging architecture, our approach achieves competitive
performances in comparison to state-of-the-art syntactic sentence classification methods.

Word / NNs Sentiment Mask Newswire Mask Original
uncomfortable uneasy, enough, renovations, racket, awkward, uneasy,

terribly, hence contingent, competing unpleasant, bothered
president being, concerned, between, growth, vice, chief,

nothing, then bank, earnings executive, former

Table 2: Neighborhood of words obtained with two different sparsity masks: (a) sentiment mask from the
SST dataset, (b) Newswire mask from the Reuters newswire dataset. In addition, we show the neighbors
identified using the original word embeddings.

the NLP task at hand. Such a task-driven approach
has two important advantages: (a) By inferring
sparsity patterns specific to the task/dataset there
is improved discrimination, (b) We can circum-
vent the computationally intensive sparse learning
by adding this as a layer into the traditional deep
learning architectures used for sentence classifica-
tion. In the rest of paper, we describe our approach
to couple the process of sparsifying word embed-
dings in deep undordered sentence classification
framework similar to (Iyyer et al., 2015).

3 Proposed Approach

The proposed architecture shown in Figure
2(right) aims to infer a sparsity mask for the word
embeddings using a deep unordered composition
network (Iyyer et al., 2015). Note that, the sen-
tence modeling corresponds to simply averaging
the word vectors in that sentence. Let the word
vectors be denoted by a matrix W 2 RV,d. In our
architecture, we introduce the sparsity mask M
which is applied to the word vector matrix W as an
element-wise product. The mask is a real valued
matrix which is passed through Relu non-linear
activation to transform into a sparse mask with
non-negative entries. This mask is applied in a
multiplicative manner on W to obtain the masked
word vector matrix Ŵ = W � Relu(M) and is

optimized such that the sentence-level classifica-
tion performance is maximized. We also consider
a variant of this architecture, wherein the entries
are thresholded to discrete values 0 or 1 based on
the sign of entries in the real valued mask.

For all analysis and results reported in this pa-
per, we used the pre-trained 300�dimensional
Glove (Pennington et al., 2014) word vectors. As
described earlier, a sentence level representation
is created by averaging the word vectors corre-
sponding to the constituent words. This 300-
dimensional representation is then passed through
a series of fully connected layers and finally a soft-
max layer for prediction of labels. In contrast to
the architecture in (Iyyer et al., 2015) no word-
dropout regularization is used. Apart form the
standard cross-entropy loss with a weight-decay
regularization, we also include a term in the loss
function to minimize the `1-norm of the mask to
explicitly enforce sparsity on the latter. We im-
plemented the architectures for both the real mask
and binary mask versions using Tensorflow and
Figure 3 shows the masking operation in detail us-
ing the tensorboard network architecture. visual-
izer.

The fully-connected deep network (FCN) on
top of the sentence model is maintained the same
for all datasets. The FCN is made up of three non-
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(a) Original Antonym Word Vectors (b) Original Gender Word Vectors

(c) Antonym Word Vectors with Sentiment Mask (d) Gender Word Vectors with Sentiment Mask

Figure 6: t-SNE plots of original and sparsified word vectors illustrating the ability of the learned mask
to retain only semantic relationships relevant to the task at hand.

linear layers followed by the soft-max layer. The
non-linear layer consisted of a linear transforma-
tion followed by the ReLu unit. The hidden layers
have a constant dimension of 300 and dropout is
applied at each of these layers. The same hyperpa-
rameters were used across all datasets. Adam opti-
mizer was used with learning rate set to 1e�4 and
the dropout out rate was set 0.5. The `2 regulariza-
tion parameter for weight-decay was set to 1e�4..
The weights of the FCN layers were initialized
randomly from uniform distribution [�1, 1] and
scaled with a factor of 0.08. 10-fold CV was ap-
plied to datasets with no explicit train/test splits.

4 Experiments and Results

We evaluated the proposed approaches using a set
of commonly used text classification datasets both
at the sentence level and the document level. We
report the performance of the proposed architec-
ture with respect to the classification task pertain-
ing to each dataset. This is followed up by investi-
gation of the properties of the sparsified word vec-
tors. For all classification performance compar-

isons we used the vanilla DAN with word-dropout
regularization (Iyyer et al., 2015), and the pro-
posed DAN + sparsity mask and DAN + binary
mask variants.
Datasets:

• IMDB (document level): This dataset (Maas
et al., 2011) consists of 50,000 labeled in-
stances of movie reviews taken form the
movie review site, IMDB. Each review can be
made up of several sentences and is labeled as
either positive or negative. The dataset also
provides a balanced split of 25,000 instances
for training and 25,000 instances for testing.

• SST-fine (sentence level): This sentence level
dataset was created by (Pang and Lee, 2005)
and extended by (Socher et al., 2013b). The
sentences are taken from movie review site,
Rotten Tomatoes (RT). In our experiments,
we use the fine-grain labels for the classifi-
cation task. The dataset provides three set
for training, validation and testing with each
containing and, respectively. Note that, sev-
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original: fanatically, stylings, melding, inimitable, ardently
masked: whole-heartedly, uncompromising, rosily, principled, hard-driving

original: post-camp, larceny, family-friendly, light-years, matchmaking
masked: post-camp, family-friendly, voyages, four-star, cabins

original: ballot, ontiveros, candidate, nomination, badge
masked: candidate, nomination, laziest, vote, voting

original: 95, shave, grad, veggietales, colgate
masked: shave, grad, veggietales, colgate, golf

Table 3: Words in the newswire dataset with largest coefficient along a random dimension of word
vectors. Each row belongs to different dimension.

Original blinddate, micro-device, bible-study, greenfingers, fever-pitched,
bogosian, darabont, navona, 66-day, murri

Masked screenplay, cinematic, entertaining, fascinating, movie,
daughter, he, micro-device, secret, discovers

Table 4: Demonstration of the discriminative power of sparsified word embeddings - Words with largest
`1-norm in the SUBJ dataset. The words colored in blue occur most commonly found in sentences from
the subjective class while words marked in red occur commonly in objective sentences.

eral existing syntactic approaches also utilize
the phrase level labels by augmenting them
to the training set. However, we evaluate the
three DAN architectures without the phrase-
level labels.

• SUBJ (sentence level): This dataset called as
the Subjective dataset (Pang and Lee, 2004)
involves classifying a sentence as either being
subjective or objective. This dataset provides
10,000 instances in total and contain separate
validation/test set.

• Reuters (document level): This dataset com-
prises of 11228 newswires from Reuters. The
task is to classify the newswires into one of
the given 46 topics. There is no standard
train/test split for this dataset.

The classification performance on these datasets
is reported in table 1. As it can be observed,
the sparsified word vectors ourperform the con-
ventional word embeddings with the DAN archi-
tecture and perform competitively with respect to
state-of-the-art syntactic methods. Investigating
the properties of the masked work vectors and
comparing them to original work vectors can shed
some light on the behavior of the sparsification
procedure. Figure 5(a) shows the mean `1-norm
of each dimension of the word vector across all
the words in the vocabulary for the SST sentiment

classification dataset. The dimensions are ordered
by their `1-norm in the original word vector space.
The general behavior remains the same, however
with an overall reduction in norm that can be at-
tributed to the sparsity in the masked word vec-
tors. Similar analysis can be performed with re-
spect to words instead of each word vector dimen-
sions. In figure 5(b), the blue line corresponds to
`1-norm of the top 500 words ordered by the norm.
The norm for the same words in the masked space
is shown in red, which indicates that the mask is
word-specific and can tune the entries as suited for
the task in hand.

Analysis of task-specific mask: To understand
the effect of the task-specific mask, we study the
similarity of words and compare them in the origi-
nal word vector space and the sparsified word vec-
tor spaces. Table 4 shows a couple of example
neighborhoods of words in these spaces. Subjec-
tively, we can see that the word vector semantic
space is modified such that word neighborhoods
that are more important for the task are preserved
and enhanced. We can draw similar inferences by
looking at the t-SNE (Van der Maaten and Hinton,
2008; Faruqui and Dyer, 2014) plots as seen in fig-
ure 6.

Another approach is to investigate the individ-
ual dimensions of word vector and how the mask
affects their behavior is isolation. In table 3,
we show the top words for 4 random dimensions
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original: officials, he, government, who, political
masked: she, he, local, until, decision

original: societal, well-defined, physiological, mechanisms, perceptible
masked: predictable, least, familial, elements, unconditional

original: wanna, song, lil, bitch, gonna
masked: movies, laugh, fans, moments, wit

original: voltage, layer, cells, surface, battery
masked: easy, i, velocity, provides, functions
original: goldie, knowles, hailey, dick, dildo
masked: rachel, peter, patricia, alex, johnny

Table 5: Words from SUBJ dataset with largest coefficient along the top-5 dimensions (in terms of `1-
norm) of word vectors.

of the original word vectors and the correspond-
ing dimensions from the masked counterparts ob-
tained from the SST-fine sentiment classification
task. The top words are obtained by sorting the
absolute value of the words along each of those di-
mensions. Since, there is a direct correspondence
between original and masked word vector dimen-
sions, we can directly compare them. The exam-
ples in table 3 show that mask improves the se-
mantic consistency and hence improves interpre-
tation of individual dimensions. Similar analysis
is carried our for the SUBJ dataset and the results
are reported in Table 5

Finally, we use the SUBJ dataset to demonstrate
the discriminative power of sparsified word em-
beddings in sentence classification. The words
with the largest `1-norm in the masked vector
space in Table 4 reveal that the sparsity mask iden-
tifies a set of words crucial for discriminating the
two classes. Finally, we consider an example sen-
tence in each of the two classes and show the aver-
age `1 norms for words in the sentences in Figure
7. As it can be observed, words such as emotional
and material are crucial to identifying the subjec-
tive nature of the sentence while words such as
125 � year which has prominence in the original
word vector space has no relevance.

5 Conclusions

We have described an architecture that performs
fine tuning of the word vectors in a classifi-
cation setup while promoting sparsity in them.
The resulting network achieves competitive re-
sults on several text classification datasets. This
approach of inducing sparsity is computationally
much cheaper than the traditional sparse models.
The fine-tuned word vectors are also shown to be

more interpretable, task specific and in process
enhance the effectiveness of architectures based
on simple unordered composition model. Also,
the resulting word vectors posses improved dis-
criminatory power suggesting that the use of this
method as a pre-processing step can potentially
lead to improved performance in other tasks which
utilize word vectors.
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