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Abstract

In this paper, we propose a new Trans-
former neural machine translation (NMT)
model that incorporates dependency re-
lations into self-attention on both source
and target sides, dependency-based self-
attention. The dependency-based self-
attention is trained to attend to the modi-
fiee for each token under constraints based
on the dependency relations, inspired
by linguistically-informed self-attention
(LISA). While LISA was originally de-
signed for Transformer encoder for se-
mantic role labeling, this paper extends
LISA to Transformer NMT by masking fu-
ture information on words in the decoder-
side dependency-based self-attention. Ad-
ditionally, our dependency-based self-
attention operates at subword units cre-
ated by byte pair encoding. Experiments
demonstrate that our model achieved a
1.0 point gain in BLEU over the base-
line model on the WAT’18 Asian Scientific
Paper Excerpt Corpus Japanese-to-English
translation task.

1 Introduction

In the field of machine translation (MT), the
Transformer model (Vaswani et al., 2017) has
outperformed recurrent neural network (RNN)-
based models (Sutskever et al., 2014) and con-
volutional neural network (CNN)-based models
(Gehring et al., 2017) on many translation tasks,
and thus has garnered attention from MT re-
searchers. The Transformer model computes the
strength of a relationship between two words in
a sentence by means of a self-attention mecha-
nism, which has contributed to the performance
improvement in not only MT but also various NLP

tasks such as language modeling and semantic role
labeling (SRL).

The performance of MT, including statisti-
cal machine translation and RNN-based neural
machine translation (NMT), has been improved
by incorporating sentence structures (Lin, 2004;
Chen et al., 2017; Eriguchi et al., 2017; Wu et al.,
2018). In addition, Strubell et al. (2018) have im-
proved a Transformer-based SRL model by in-
corporating dependency structures of sentences
into self-attention, which is called linguistically-
informed self-attention (LISA). In LISA, one at-
tention head of a multi-head self-attention is
trained with constraints based on dependency rela-
tions to attend to syntactic parents for each token.

In the present work, we aim to improve trans-
lation performance by utilizing dependency rela-
tions in Transformer NMT. To this end, we pro-
pose a Transformer NMT model that incorporates
dependency relations into self-attention on both
source and target sides. Specifically, in training,
a part of self-attention is learned with constraints
based on dependency relations of source or target
sentences to attend to a modifiee for each token,
and, in decoding, the proposed model translates a
sentence in consideration of dependency relations
in both the source and target sides, which are cap-
tured by our self-attention mechanisms. Hereafter,
the proposed self-attention is called dependency-
based self-attention. Note that the dependency-
based self-attention is inspired by LISA, but the
straightforward adaptation of LISA, which is pro-
posed for Transformer encoder, does not work
well for NMT because a target sentence is not
fully revealed in inference. Therefore, the pro-
posed model masks future information on words in
the decoder-side dependency-based self-attention
to prevent from attending to unpredicted subse-
quent tokens.

Recent NMT models treat a sentence as a sub-
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Figure 1: Transformer model.

word sequence rather than a word sequence to ad-
dress the translation of out-of-vocabulary words
(Sennrich et al., 2016). Therefore, we extend
dependency-based self-attention to operate at sub-
word units created by byte pair encoding (BPE)
rather than word-units.

Our experiments demonstrate that the proposed
Transformer NMT model performs 1.0 BLEU
points higher than the baseline Transformer NMT
model, which does not incorporate dependency
structures, on the WAT’18 Asian Scientific Pa-
per Excerpt Corpus (ASPEC) Japanese-to-English
translation task. The experiments also demon-
strate the effectiveness of each of our propos-
als, namely, encoder-side dependency-based self-
attention, decoder-side dependency-based self-
attention, and extension for BPE.

2 Transformer NMT

We provide here an overview of the Transformer
NMT model (Vaswani et al., 2017), which is the
basis of our proposed model. The outline of the
Transformer NMT model is shown in Fig. 1.

The Transformer NMT model is an encoder-
decoder model that has a self-attention mech-
anism. The encoder maps an input sequence
of symbol representations (i.e., a source sen-
tence) X = (x1, x2, . . . , xnenc)

T to an inter-
mediate vector. Then, the decoder generates an
output sequence (i.e., a target sentence) Y =
(y1, y2, . . . , yndec

)T , given the intermediate vec-
tor. The encoder and the decoder are composed
of a stack of Je encoder layers and of Jd decoder
layers, respectively.

Because the Transformer model does not in-
clude recurrent or convolutional structures, it en-
codes word positional information as sinusoidal
positional encodings:

P(pos,2i) = sin(pos/100002i/d), (1)

P(pos,2i+1) = cos(pos/100002i/d), (2)

where pos is the position, i is the dimension, and
d is the dimension of the intermediate representa-
tion. At the first layers of the encoder and decoder,
the positional encodings calculated by Equations
(1) and (2) are added to the input embeddings.

The j-th encoder layer’s output S(j)
enc is gener-

ated by a self-attention layer SelfAttn() and a
position-wise fully connected feed forward net-
work layer FFN() as follows:

H(j)
enc = LN(S

(j−1)
enc + SelfAttn(S

(j−1)
enc )), (3)

S(j)
enc = LN(H

(j)
enc + FFN(H

(j)
enc)), (4)

where S
(0)
enc is the input of the encoder, H

(j)
enc

is the output of the j-th encoder’s self-attention,
and LN() is layer normalization (Lei Ba et al.,
2016). The j-th decoder layer’s output S

(j)
dec is

generated by an encoder-decoder attention layer
EncDecAttn() in addition to the two sublayers
of the encoder (i.e., SelfAttn() and FFN()) as
follows:

H
(j)
dec = LN(S

(j−1)
dec + SelfAttn(S

(j−1)
dec )), (5)

G
(j)
dec = LN(H

(j)
dec + EncDecAttn(H

(j)
dec)), (6)

S
(j)
dec = LN(G

(j)
dec + FFN(H

(j)
dec)), (7)

where S
(0)
dec is the input of the decoder, H

(j)
dec is

the output of the j-th decoder’s self-attention, and
G

(j)
dec is the output of the j-th decoder’s encoder-

decoder attention.
The last decoder layer’s output S(Jd)

dec is linearly
mapped to a V -dimensional matrix, where V is
the output vocabulary size. Then, the output se-
quence Y is generated based on P (Y | X), which
is calculated by applying the softmax function to
the V -dimensional matrix.

Self-attention computes the strength of the re-
lationship between two words in the same sen-
tence (i.e., between two source words or be-
tween two target words), and encoder-decoder
attention computes the strength of the relation-
ship between a source word and a target word.
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Both the self-attention and encoder-decoder at-
tention are implemented with multi-head atten-
tion, which projects the embedding space into
nhead subspaces of the dhead = d/nhead dimen-
sion and calculates attention in each subspace. In
the j-th layer’s self-attention, the previous layer’s
output S(j−1) ∈ Rn×d is linearly mapped to
three dhead-dimensional subspaces, Q

(j)
h , K

(j)
h ,

and V
(j)
h , using parameter matrices WQ(j)

h ∈
Rd×dhead , WK(j)

h ∈ Rd×dhead , and W V (j)

h ∈
Rd×dhead , where n is the length of the input se-
quence and 1 ≤ h ≤ nhead

1. In the j-th de-
coder layer’s encoder-decoder attention, the pre-
vious layer’s output S(j−1)

dec is mapped to Q
(j)
h , and

the last encoder layer’s output S(Je)
enc is mapped to

K
(j)
h and V

(j)
h .

Then, an attention weight matrix, where each
value represents the strength of the relationship
between two words, is calculated on each sub-
space as follows:

A
(j)
h = softmax(d−0.5

headQ
(j)
h K

(j)T

h ). (8)

By multiplying A
(j)
h and V

(j)
h , a weighted repre-

sentation matrix M
(j)
h is obtained:

M
(j)
h = A

(j)
h V

(j)
h . (9)

M
(j)
h in self-attention includes the strengths of

the relationships with all words in the same sen-
tence for each source or target word, and M

(j)
h in

encoder-decoder attention includes the strengths
of the relationships with all source words for each
target word.

Finally, the concatenation of all M
(j)
h (i.e.,

M
(j)
1,2,...,nhead

) is mapped to a d-dimensional ma-
trix M (j) as follows:

M (j) = WM(j)
[M

(j)
1 ; . . . ;M (j)

nhead
], (10)

where WM(j) ∈ Rd×d is a parameter matrix.
Note that, in training, the decoder’s self-

attention masks future words so as to ensure that
the attentions of a target word do not rely on un-
predicted words in inference.

3 Proposed Method

Figure 2 shows the outline of the proposed model.
The proposed model incorporates dependency re-

1S(j) indicates S(j)
enc for the encoder and S

(j)
dec for the de-

coder.
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Figure 2: Proposed model.

lations into self-attention on both source and tar-
get sides, dependency-based self-attention. In
particular, it parses the dependency structures of
source sentences and target sentences by one at-
tention head of the pe-th encoder layer’s multi-
head self-attention and one of the pd-th decoder
layer’s multi-head self-attention, respectively, and
translates a sentence based on the source-side
and target-side dependency structures. We use
the deep bi-affine parser (Dozat and Manning,
2016) as a model for dependency parsing in
the dependency-based self-attention according to
LISA. There are two inherent differences between
LISA and our dependency-based self-attention: (i)
our decoder-side dependency-based self-attention
masks future information on words, and (ii) our
dependency-based self-attention operates at sub-
word units created by byte pair encoding rather
than word-units.

3.1 Dependency-Based Self-Attention

The dependency-based self-attention parses de-
pendency structures by extending the multi-head
self-attention of the p-th layer of the encoder or
decoder2. First, the p-th self-attention layer maps
the previous layer’s output S(p−1) of d-dimension
to dhead-dimensional subspaces of multi-head at-

2p indicates pe for the encoder and pj for the decoder.
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tention as follows:

Qparse = S(p−1)WQparse , (11)

Kparse = S(p−1)WKparse , (12)

Vparse = S(p−1)W Vparse , (13)

where WQparse , WKparse , and W Vparse are d ×
dhead weight matrices. Next, an attention weight
matrix Aparse, where each value indicates the de-
pendency relationship between two words, is cal-
culated by using the bi-affine operation as follows:

Aparse = softmax(QparseU
(1)KT

parse+QparseU
(2)),

(14)

where U (1) ∈ Rdhead×dhead , U (2) =

n︷ ︸︸ ︷
(u . . .u), and

u ∈ Rdhead are the parameters. In Aparse, the
probability of token q being the head of token t
(i.e., t modifying q) is modeled as Aparse[t, q]:

P (q = head(t) | X) = Aparse[t, q], (15)

where X is a source sentence or a target sentence,
and the root token is defined as having a self-loop
(i.e., q = head(t) = ROOT ). Then, a weighted
representation matrix Mparse, which includes de-
pendency relationships in the source sentence or
target sentence, is obtained by multiplying Aparse

and Vparse:

Mparse = AparseVparse. (16)

Finally, after one attention head (e.g., M (p)
nhead)

is replaced with Mparse, the concatenation of all
M

(p)
h (i.e., Mparse and M

(p)
1,2,...,nhead−1

) is mapped
to a d-dimensional matrix M (p) like the conven-
tional multi-head attention:

M (p) = WM(p)
[Mparse;M

(p)
1 ; . . . ;M

(p)
nhead−1],

(17)
where WM(p) ∈ Rd×d is a parameter matrix.

As can be seen in Equation (17), in the
dependency-based self-attention, dependency re-
lations are identified by one attention head Mparse

of the p-th layer’s multi-head attention.

3.2 Objective Function

Our model learns translation and dependency
parsing at the same time by minimizing the fol-
lowing objective function:

etokens + λence
parse
enc + λdece

parse
dec , (18)

Objects and methods of surveillance are explained .

(a) Dependency relationships.

Objects and methods of surveillance are explained .

Objects

and

methods

of

surveillance

are

explained

.

(b) Attention matrix representing supervisions.

Figure 3: Decoder side masked dependency-based
self-attention.

where etokens is the error of translation, and eparseenc

and eparsedec are the errors of dependency pars-
ing in the encoder and the decoder, respectively.
λenc > 0 and λdec > 0 are hyper-parameters
to control the influence of dependency parsing er-
rors in the encoder and the decoder, respectively.
etokens is calculated by label smoothed cross en-
tropy (Szegedy et al., 2016), and eparseenc and eparsedec

are calculated by cross entropy.
Note that, in the training of the decoder-side

dependency-based self-attention, future informa-
tion is masked to prevent attending to unpre-
dicted tokens in inference. An example of training
data for the decoder-side dependency-based self-
attention is provided in Figure 3, where (a) is an
example of dependency structures3 and (b) shows
the attention matrix representing the supervisions
from (a). In (b), a dark cell indicates a depen-
dency relation and a dotted cell means a masked

3In this paper, an arrow is drawn from a modifier to its
modifiee. For example, the arrow drawn from “Objects”
to “explained” indicates that “Objects” modifies “explained”
(i.e., “explained” = head(“Objects”)).
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sentence pairs
train 1,198,149
dev 1,790
test 1,812

Table 1: Statistics of the ASPEC data.

Model BLEU
Trans. 27.29

Trans. + DBSA(Enc) 28.05
Trans. + DBSA(Dec) 27.86

Trans. + DBSA(Enc) + DBSA(Dec) 28.29

Table 2: Translation performance.

element. As shown, future information on each
word is masked. For example, the dependency re-
lation from “are” to “explained” is masked.

3.3 Subword Dependency-Based
Self-Attention

Recent NMT models have improved the trans-
lation performance by treating a sentence as a
subword sequence rather than a word sequence.
Therefore, we extend dependency-based self-
attention to work for subword sequences. In our
subword dependency-based self-attention, a sen-
tence is divided into a subword sequence by BPE
(Sennrich et al., 2016). When a word is divided
into multiple subwords, the modifiee (i.e., the
head) of the rightmost subword is set to the modi-
fiee of the original word and the modifiee of each
subword other than the rightmost one is set to the
right adjacent subword.

Figure 4 shows an example of subword-level
dependency relations, where “@@” is a sub-
word segmentation symbol. “Fingerprint” is
divided into the three subwords: “Fing@@”,
“er@@“, and “print”. When the head of the
word “Fingerprint” is “input” in the original
word-level sentence, the heads of the three sub-
words are determined as follows: “er@@” =
head(“Fing@@”), “print” = head(“er@@”), and
“input” = head(“print”).

4 Experiments

4.1 Experiment Settings
In our experiments, we compared the proposed
model with a conventional Transformer NMT
model, which does not incorporate dependency
structures, to confirm the effectiveness of the pro-
posed model. We stacked six layers for each

encoder and decoder and set nhead = 8 and
d = 512. For the proposed model, we incor-
porated dependency-based self-attention into the
fourth layer in both the encoder and the decoder
(i.e., pe = pd = 4).

We evaluated translation performance on
the WAT’18 ASPEC (Nakazawa et al., 2016)
Japanese-to-English translation task. We to-
kenized each Japanese sentence with KyTea
(Neubig et al., 2011) and preprocessed according
to the recommendations from WAT’184. We used
the vocabulary of 100K subword tokens based
on BPE for both languages and used the first
1.5 million translation pairs as the training data.
In the training, long sentences with over 250
subword-tokens were filtered out. Table 1 shows
the statistics of our experiment data.

We used Japanese dependency structures gen-
erated by EDA5 and English dependency struc-
tures generated by Stanford Dependencies6 in the
training of the source-side dependency-based self-
attention and the target-side dependency-based
self-attention, respectively. Note that Stanford De-
pendencies and EDA are not used in the testing.

4.2 Training Details

We trained each model using Adam
(Kingma and Ba, 2014), where the learning
rate and hyperparameter settings are set following
Vaswani et al. (2017). For the objective function,
we set ϵls (Szegedy et al., 2016) in label smooth-
ing to 0.1 and both the hyperparameters λenc

and λdec to 1.0. We set the mini-batch size to
224 and the number of epochs to 20. We chose
the model that achieved the best BLEU score on
the development set and evaluated the sentences
generated from the test set using beam search
with a beam size of 4 and length penalty α = 0.6
(Wu et al., 2016).

4.3 Experiment Results

Table 2 lists the experiment results.
Translation performance is measured by
BLEU (Papineni et al., 2002). In Table 2,
DBSA denotes our dependency-based self-
attention. As shown, our proposed model

4http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2018/baseline/dataPreparationJE.html

5http://www.ar.media.kyoto-u.ac.jp/
tool/EDA

6https://nlp.stanford.edu/software/
stanford-dependencies.html
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Fing@@ er@@ print is input as an image .

Figure 4: Subword-level dependency relationships.

Model BPE BLEU
Trans. w/o 26.39
Trans. w/ 27.29

Trans. + DBSA(Enc) + DBSA(Dec) w/o 26.62
Trans. + DBSA(Enc) + DBSA(Dec) w/ 28.29

Table 3: Effectiveness of subword.

“Trans.+DBSA(Enc)+DBSA(Dec)” performed
significantly better than the baseline model
“Trans.”, which demonstrates the effectiveness
of our dependency-based self-attention. Table
2 also shows that using either the encoder-side
dependency-based self-attention or the decoder-
side dependency-based self-attention improves
translation performance, and using them in
combination achieves further improvements.

5 Discussion

To determine the effectiveness of our extension to
utilize subwords, we evaluated the models with-
out BPE, where each sentence is treated as a word
sequence. In the models without BPE, words that
appeared fewer than five times in the training data
were replaced with the special token “<UNK>”.
Table 3 lists the results. As shown, BPE im-
proves the performance of both the baseline and
the proposed model, which demonstrates the ef-
fectiveness of the subword dependency-based self-
attention. Table 3 also shows that the proposed
model outperforms the baseline model when BPE
is not used. This strengthens the usefulness of our
dependency-based self-attention.

6 Related Work

NMT models have been improved by in-
corporating source-side dependency relations
(Chen et al., 2017), or target-side dependency re-
lations (Eriguchi et al., 2017), or both (Wu et al.,
2018).

Chen et al. (2017) have proposed SDRNMT,
which computes dependency-based context vec-
tors from source-side dependency trees by CNN

and then uses the representations in the encoder of
an RNN-based NMT model.

Eriguchi et al. (2017) have proposed
NMT+RNNG, which combines the RNN-
based dependency parser, RNNG (Dyer et al.,
2016), and the decoder of an RNN-based NMT
model.

Wu et al. (2018) have proposed a syntax-aware
encoder, which encodes two extra sequences lin-
earized from source-side dependency trees in ad-
dition to word sequences, and have incorporated
Action RNN, which implements a shift-reduce
transition-based dependency parsing by predicting
action sequences, into the decoder. Their method
has been applied to an RNN-based NMT model
and a Transformer NMT model.

As far as we know, except for Wu et al.
(2018), existing dependency-based NMT mod-
els have been based on RNN-based NMT. Al-
though Wu et al. (2018) used dependency rela-
tions in Transformer NMT, they did not modify the
Transformer model itself. In contrast, we have im-
proved a Transformer NMT model to explicitly in-
corporate dependency relations (i.e., dependency-
based self-attention). In addition, while Wu et al.
(2018) need a parser for constructing source-side
dependency structures in inference, our proposed
method does not require an external parser in
inference because the learned dependency-based
self-attention of the encoder finds dependency re-
lations.

7 Conclusion

In this paper, we have proposed a method to in-
corporate dependency relations on both source
and target sides into Transformer NMT through
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dependency-based self-attention. Our decoder-
side dependency-based self-attention masks future
information to avoid conflicts between training
and inference. In addition, our dependency-based
self-attention is extended to work well for sub-
word sequences. Experimental results showed that
the proposed model achieved a 1.0 point gain in
BLEU over the baseline Transformer model on
the WAT’18 ASPEC Japanese-English translation
task. In future work, we will explore the effective-
ness of our proposed method for language pairs
other than Japanese-to-English.
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