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Abstract

Relation Extraction (RE) is the task of
extracting semantic relationships between
entities in text. Recent studies on rela-
tion extraction are mostly supervised. The
clear drawback of supervised methods is
the need of training data: labeled data is
expensive to obtain, and there is often a
mismatch between the training data and
the data the system will be applied to.
This is the problem of domain adapta-
tion. In this paper, we propose to combine
(i) term generalization approaches such as
word clustering and latent semantic anal-
ysis (LSA) and (ii) structured kernels to
improve the adaptability of relation ex-
tractors to new text genres/domains. The
empirical evaluation on ACE 2005 do-
mains shows that a suitable combination
of syntax and lexical generalization is very
promising for domain adaptation.

1 Introduction

Relation extraction is the task of extracting se-
mantic relationships between entities in text, e.g.
to detect an employment relationship between the
person Larry Page and the company Google in
the following text snippet: Google CEO Larry
Page holds a press announcement at its headquar-
ters in New York on May 21, 2012. Recent stud-
ies on relation extraction have shown that super-
vised approaches based on either feature or ker-
nel methods achieve state-of-the-art accuracy (Ze-
lenko et al., 2002; Culotta and Sorensen, 2004;

∗ The first author was affiliated with the Department of
Computer Science and Information Engineering of the Uni-
versity of Trento (Povo, Italy) during the design of the mod-
els, experiments and writing of the paper.

Zhang et al., 2005; Zhou et al., 2005; Zhang et
al., 2006; Bunescu, 2007; Nguyen et al., 2009;
Chan and Roth, 2010; Sun et al., 2011). How-
ever, the clear drawback of supervised methods is
the need of training data, which can slow down
the delivery of commercial applications in new
domains: labeled data is expensive to obtain, and
there is often a mismatch between the training data
and the data the system will be applied to. Ap-
proaches that can cope with domain changes are
essential. This is the problem of domain adapta-
tion (DA) or transfer learning (TL). Technically,
domain adaptation addresses the problem of learn-
ing when the assumption of independent and iden-
tically distributed (i.i.d.) samples is violated. Do-
main adaptation has been studied extensively dur-
ing the last couple of years for various NLP tasks,
e.g. two shared tasks have been organized on do-
main adaptation for dependency parsing (Nivre et
al., 2007; Petrov and McDonald, 2012). Results
were mixed, thus it is still a very active research
area.

However, to the best of our knowledge, there
is almost no work on adapting relation extraction
(RE) systems to new domains.1 There are some
prior studies on the related tasks of multi-task
transfer learning (Xu et al., 2008; Jiang, 2009)
and distant supervision (Mintz et al., 2009), which
are clearly related but different: the former is the
problem of how to transfer knowledge from old
to new relation types, while distant supervision
tries to learn new relations from unlabeled text
by exploiting weak-supervision in the form of a
knowledge resource (e.g. Freebase). We assume
the same relation types but a shift in the underlying

1Besides an unpublished manuscript of a student project,
but it is not clear what data was used. http://tinyurl.com/
bn2hdwk
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data distribution. Weak supervision is a promis-
ing approach to improve a relation extraction sys-
tem, especially to increase its coverage in terms of
types of relations covered. In this paper we ex-
amine the related issue of changes in the underly-
ing data distribution, while keeping the relations
fixed. Even a weakly supervised system is ex-
pected to perform well when applied to any kind of
text (other domain/genre), thus ideally, we believe
that combining domain adaptation with weak su-
pervision is the way to go in the future. This study
is a first step towards this.

We focus on unsupervised domain adaptation,
i.e. no labeled target data. Moreover, we consider
a particular domain adaptation setting: single-
system DA, i.e. learning a single system able to
cope with different but related domains. Most
studies on DA so far have focused on building
a specialized system for every specific target do-
main, e.g. Blitzer et al. (2006). In contrast, the
goal here is to build a single system that can ro-
bustly handle several domains, which is in line
with the setup of the recent shared task on pars-
ing the web (Petrov and McDonald, 2012). Par-
ticipants were asked to build a single system that
can robustly parse all domains (reviews, weblogs,
answers, emails, newsgroups), rather than to build
several domain-specific systems. We consider this
as a shift in what was considered domain adapta-
tion in the past (adapt from source to a specific tar-
get) and what can be considered a somewhat dif-
ferent recent view of DA, that became widespread
since 2011/2012. The latter assumes that the tar-
get domain(s) is/are not really known in advance.
In this setup, the domain adaptation problem boils
down to finding a more robust system (Søgaard
and Johannsen, 2012), i.e. one wants to build a
system that can robustly handle any kind of data.

We propose to combine (i) term generalization
approaches and (ii) structured kernels to improve
the performance of a relation extractor on new
domains. Previous studies have shown that lexi-
cal and syntactic features are both very important
(Zhang et al., 2006). We combine structural fea-
tures with lexical information generalized by clus-
ters or similarity. Given the complexity of feature
engineering, we exploit kernel methods (Shawe-
Taylor and Cristianini, 2004). We encode word
clusters or similarity in tree kernels, which, in
turn, produce spaces of tree fragments. For ex-
ample, “president”, “vice-president” and “Texas”,

“US”, are terms indicating an employment rela-
tion between a person and a location. Rather than
only matching the surface string of words, lexi-
cal similarity enables soft matches between similar
words in convolution tree kernels. In the empir-
ical evaluation on Automatic Content Extraction
(ACE) data, we evaluate the impact of convolu-
tion tree kernels embedding lexical semantic sim-
ilarities. The latter is derived in two ways with:
(a) Brown word clustering (Brown et al., 1992);
and (b) Latent Semantic Analysis (LSA). We first
show that our system aligns well with the state of
the art on the ACE 2004 benchmark. Then, we
test our RE system on the ACE 2005 data, which
exploits kernels, structures and similarities for do-
main adaptation. The results show that combining
the huge space of tree fragments generalized at the
lexical level provides an effective model for adapt-
ing RE systems to new domains.

2 Semantic Syntactic Tree Kernels

In kernel-based methods, both learning and classi-
fication only depend on the inner product between
instances. Kernel functions can be efficiently and
implicitly computed by exploiting the dual formu-
lation:

∑
i=1..l yiαiφ(oi)φ(o) + b = 0, where oi

and o are two objects, φ is a mapping from an ob-
ject to a feature vector ~xi and φ(oi)φ(o) =K(oi, o)
is a kernel function implicitly defining such a map-
ping. In case of structural kernels, K determines
the shape of the substructures describing the ob-
jects. Commonly used kernels in NLP are string
kernels (Lodhi et al., 2002) and tree kernels (Mos-
chitti, 2006; Moschitti, 2008).
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Figure 1: Syntactic tree kernel (STK).

Syntactic tree kernels (Collins and Duffy, 2001)
compute the similarity between two trees T1
and T2 by counting common sub-trees (cf. Fig-
ure 1), without enumerating the whole fragment
space. However, if two trees have similar sub-
structures that employ different though related ter-
minal nodes, they will not be matched. This is
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clearly a limitation. For instance, the fragments
corresponding to governor from Texas and
head of Maryland are intuitively semanti-
cally related and should obtain a higher match
when compared to mother of them.

Semantic syntactic tree kernels (Bloehdorn
and Moschitti, 2007a; Bloehdorn and Moschitti,
2007b; Croce et al., 2011) provide one way to ad-
dress this problem by introducing similarity σ that
allows soft matches between words and, conse-
quently, between fragments containing them. Let
N1 and N2 be the set of nodes in T1 and T2, re-
spectively. Moreover, let Ii(n) be an indicator
variable that is 1 if subtree i is rooted at n and
0 otherwise. The syntactic semantic convolution
kernel TKσ (Bloehdorn and Moschitti, 2007b)
over T1 and T2 is computed as TKσ(T1, T2) =∑
n1∈N1,n2∈N2

∆σ(n1, n2) where ∆σ(n1, n2) =∑
n1∈N1

∑
n2∈N2

∑
i Ii(n1)Ii(n2) is computed ef-

ficiently using the following recursive defini-
tion: i) If the nodes n1 and n2 are ei-
ther different or have different number of chil-
dren then ∆σ(n1, n2) = 0; else ii) If
n1 and n2 are pre-terminals then ∆σ(n1, n2)

= λ
∏nc(n1)
j=1 ∆σ(ch(n1, j), ch(n2, j)), where σ

measures the similarity between the correspond-
ing children of n1 and n2; iii) If n1 and n2 have
identical children: ∆σ(n1, n2) = λ

∏nc(n1)
j=1 (1 +

∆σ(ch(n1, j)), ch(n2, j)); else ∆σ(n1, n2) = 0.
TKσ combines generalized lexical with structural
information: it allows matching tree fragments
that have the same syntactic structure but differ in
their terminals. After introducing related work, we
will discuss computational structures for RE and
their extension with semantic similarity.

3 Related Work

Semantic syntactic tree kernels have been previ-
ously used for question classification (Bloehdorn
and Moschitti, 2007a; Bloehdorn and Moschitti,
2007b; Croce et al., 2011). These kernels have
not yet been studied for either domain adaptation
or RE. Brown clusters were studied previously for
feature-based approaches to RE (Sun et al., 2011;
Chan and Roth, 2010), but they were not yet eval-
uated in kernels. Thus, we present a novel applica-
tion of semantic syntactic tree kernels and Brown
clusters for domain adaptation of tree-kernel based
relation extraction.

Regarding domain adaptation, several meth-
ods have been proposed, ranging from instance

weighting (Jiang and Zhai, 2007) to approaches
that change the feature representation (Daumé III,
2007) or try to exploit pivot features to find
a generalized shared representation between do-
mains (Blitzer et al., 2006). The easy-adapt ap-
proach presented in Daumé III (2007) assumes the
supervised adaptation setting and is thus not ap-
plicable here. Structural correspondence learn-
ing (Blitzer et al., 2006) exploits unlabeled data
from both source and target domain to find cor-
respondences among features from different do-
mains. These correspondences are then integrated
as new features in the labeled data of the source
domain. The key to SCL is to exploit pivot fea-
tures to automatically identify feature correspon-
dences, and as such is applicable to feature-based
approaches but not in our case since we do not as-
sume availability of target domain data. Instead,
we apply a similar idea where we exploit an en-
tire unlabeled corpus as pivot, and compare our
approach to instance weighting (Jiang and Zhai,
2007).

Instance weighting is a method for domain
adaptation in which instance-dependent weights
are assigned to the loss function that is mini-
mized during the training process. Let l(x, y, θ)
be some loss function. Then, as shown in Jiang
and Zhai (2007), the loss function can be weighted
by βil(x, y, θ), such that βi = Pt(xi)

Ps(xi)
, where Ps

and Pt are the source and target distributions, re-
spectively. Huang et al. (2007) present an appli-
cation of instance weighting to support vector ma-
chines by minimizing the following re-weighted
function: minθ,ξ

1
2 ||θ||2 + C

∑m
i=1 βiξi. Finding

a good weight function is non-trivial (Jiang and
Zhai, 2007) and several approximations have been
evaluated in the past, e.g. Søgaard and Haulrich
(2011) use a bigram-based text classifier to dis-
criminate between domains. We will use a binary
classifier trained on RE instance representations.

4 Computational Structures for RE

A common way to represent a constituency-based
relation instance is the PET (path-enclosed-tree),
the smallest subtree including the two target enti-
ties (Zhang et al., 2006). This is basically the for-
mer structure PAF2 (predicate argument feature)
defined in Moschitti (2004) for the extraction of
predicate argument relations. The syntactic rep-

2It is the smallest subtree enclosing the predicate and one
of its argument node.
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resentation used by Zhang et al. (2006) (we will
refer to it as PET Zhang) is the PET with enriched
entity information: e.g. E1-NAM-PER, including
entity type (PER, GPE, LOC, ORG) and mention
type (NAM, NOM, PRO, PRE: name, nominal,
pronominal or premodifier). An alternative ker-
nel that does not use syntactic information is the
Bag-of-Words (BOW) kernel, where a single root
node is added above the terminals. Note that in
this BOW kernel we actually mark target entities
with E1/E2. Therefore, our BOW kernel can be
considered an enriched BOW model. If we do not
mark target entities, performance drops consider-
ably, as discussed later.

As shown by Zhang et al. (2006), includ-
ing gold-standard information on entity and men-
tion type substantially improves relation extrac-
tion performance. We will use this gold infor-
mation also in Section 6.1 to show that our sys-
tem aligns well to the state of the art on the ACE
2004 benchmark. However, in a realistic setting
this information is not available or noisy. In fact,
as we discuss later, excluding gold entity informa-
tion decreases system performance considerably.
In the case of porting a system to new domains
entity information will be unreliable or missing.
Therefore, in our domain adaptation experiments
on the ACE 2005 data (Section 6.3) we will not
rely on this gold information but rather train a sys-
tem using PET (target mentions only marked with
E1/E2 and no gold entity label).3

4.1 Syntactic Semantic Structures

Combining syntax with semantics has a clear ad-
vantage: it generalizes lexical information encap-
sulated in syntactic parse trees, while at the same
time syntax guides semantics in order to obtain an
effective semantic similarity. In fact, lexical infor-
mation is highly affected by data-sparseness, thus
tree kernels combined with semantic information
created from additional resources should provide
a way to obtain a more robust system.

We exploit this idea here for domain adaptation
(DA): if words are generalized by semantic simi-
larity LS, then in a hypothetical world changing
LS such that it reflects the target domain would

3In a setup where gold label info is included, the impact
of similarity-based methods is limited – gold information
seems to predominate. We argue that whenever gold data is
not available, distributional semantics paired with kernels can
be useful to improve generalization and complement missing
gold info.

allow the system to perform better in the target
domain. The question remains how to establish a
link between the semantic similarity in the source
and target domain. We propose to use an entire
unlabeled corpus as pivot: this corpus must be
general enough to encapsulate the source and tar-
get domains of interest. The idea is to (i) learn
semantic similarity between words on the pivot
corpus and (ii) use tree kernels embedding such
a similarity to learn a RE system on the source,
which allows to generalize to the new target do-
main. This reasoning is related to Structural Cor-
respondence Learning (SCL) (Blitzer et al., 2006).
In SCL, a representation shared across domains is
learned by exploiting pivot features, where a set
of pivot features has to be selected (usually a few
thousands). In our case pivots are words that co-
occur with the target words in a large unlabeled
corpus and are thus implicitly represented in the
similarity matrix. Thus, in contrast to SCL, we do
not need to select a set of pivot features but rather
rely on the distributional hypothesis to infer a se-
mantic similarity from a large unlabeled corpus.
Then, this similarity is incorporated into the tree
kernel that provides the necessary restriction for
an effective semantic similarity calculation. One
peculiarity of our work is that we exploit a large
amount of general data, i.e. data gathered from the
web, which is a different but also more challeng-
ing scenario than the general unsupervised DA set-
ting where domain specific data is available. We
study two ways for term generalization in tree ker-
nels: Brown words clusters and Latent Semantic
Analysis (LSA), both briefly described next.
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Figure 2: Integrating Brown cluster information

The Brown algorithm (Brown et al., 1992) is
a hierarchical agglomerative hard-clustering algo-
rithm. The path from the root of the tree down to
a leaf node is represented compactly as a bitstring.
By cutting the hierarchy at different levels one can
obtain different granularities of word clusters. We
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evaluate different ways to integrate cluster infor-
mation into tree kernels, some of which are illus-
trated in Figure 2.

For LSA, we compute term similarity functions
following the distributional hypothesis (Harris,
1964), i.e. the meaning of a word can be described
by the set of textual contexts in which it appears.
The original word-by-word context matrix M is
decomposed through Singular Value Decomposi-
tion (SVD) (Golub and Kahan, 1965), where M
is approximated by UlSlV

T
l . This approxima-

tion supplies a way to project a generic term wi
into the l-dimensional space using W = UlS

1/2
l ,

where each row corresponds to the vectors ~wi.
Given two words w1 and w2, the term similarity
function σ is estimated as the cosine similarity be-
tween the corresponding projections ~w1, ~w2 and
used in the kernel as described in Section 2.

5 Experimental Setup

We treat relation extraction as a multi-class classi-
fication problem and use SVM-light-TK4 to train
the binary classifiers. The output of the classifiers
is combined using the one-vs-all approach. We
modified the SVM-light-TK package to include
the semantic tree kernels and instance weight-
ing. The entire software package is publicly avail-
able.5 For the SVMs, we use the same parameters
as Zhang et al. (2006): λ = 0.4, c = 2.4 using the
Collins Kernel (Collins and Duffy, 2001). The pre-
cision/recall trade-off parameter for the none class
was found on held-out data: j = 0.2. Evalua-
tion metrics are standard micro average Precision,
Recall and balanced Fscore (F1). To compute sta-
tistical significance, we use the approximate ran-
domization test (Noreen, 1989).6 In all our exper-
iments, we model argument order of the relations
explicitly. Thus, for instance for the 7 coarse ACE
2004 relations, we build 14 coarse-grained classi-
fiers (two for each coarse ACE 2004 relation type
except for PER-SOC, which is symmetric, and one
classifier for the none relation).

Data We use two datasets. To compare our
model against the state of the art we use the ACE
2004 data. It contains 348 documents and 4,374
positive relation instances. To generate the train-
ing data, we follow prior studies and extract an
instance for every pair of mentions in the same

4
http://disi.unitn.it/moschitti/Tree-Kernel.htm

5
http://disi.unitn.it/ikernels/RelationExtraction

6
http://www.nlpado.de/˜sebastian/software/sigf.shtml

sentence, which are separated by no more than
three other mentions (Zhang et al., 2006; Sun et
al., 2011). After data preprocessing, we obtained
4,327 positive and 39,120 negative instances.

ACE 2005 docs sents ASL relations
nw+bn 298 5029 18.8 3562
bc 52 2267 16.3 1297
cts 34 2696 15.3 603
wl 114 1697 22.6 677

Table 1: Overview of the ACE 2005 data.

For the domain adaptation experiments we use
the ACE 2005 corpus. An overview of the data
is given in Table 1. Note that this data is dif-
ferent from ACE 2004: it covers different years
(ACE 2004: texts from 2001-2002; ACE 2005:
2003-2005). Moreover, the annotation guidelines
have changed (for example, ACE 2005 contains no
discourse relation, some relation (sub)types have
changed/moved, and care must be taken for differ-
ences in SGM markup, etc.).

More importantly, the ACE 2005 corpus cov-
ers additional domains: weblogs, telephone con-
versation, usenet and broadcast conversation. In
the experiments, we use news (the union of nw
and bn) as source domain, and weblogs (wl), tele-
phone conversations (cts) and broadcast conversa-
tion (bc) as target domains.7 We take half of bc
as only target development set, and leave the re-
maining data and domains for final testing (since
they are already small, cf. Table 1). To get a feel-
ing of how these domains differ, Figure 3 depicts
the distribution of relations in each domain and Ta-
ble 2 provides the most frequent out-of-vocabulary
words together with their percentage.

Lexical Similarity and Clustering We applied
LSA to ukWaC (Baroni et al., 2009), a 2 billion
word corpus constructed from the Web8 using the
s-space toolkit.9 Dimensionality reduction was
performed using SVD with 250 dimensions, fol-
lowing (Croce et al., 2011). The co-occurrence
matrix was transformed by tfidf. For the Brown
word clusters, we used Percy Liang’s implemen-
tation10 of the Brown clustering algorithm (Liang,
2005). We incorporate cluster information by us-

7We did not consider the usenet subpart, since it is among
the smaller domains and data-preprocessing was difficult.

8
http://wacky.sslmit.unibo.it/

9
http://code.google.com/p/airhead-research/

10
https://github.com/percyliang/brown-cluster

1502



nw_bn bc cts wl

ART
GEN−AFF
ORG−AFF
PART−WHOLE
PER−SOC
PHYS

Distribution of relations across domains (normalized)

Domain

P
ro

po
rt

io
n

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 3: Distribution of relations in ACE 2005.

Dom Most frequent OOV words
bc
(24%)

insurance, unintelligible, malprac-
tice, ph, clip, colonel, crosstalk

cts
(34%)

uh, Yeah, um, eh, mhm, uh-huh, ˜,
ah, mm, th, plo, topic, y, workplace

wl
(49%)

title, Starbucks, Well, blog, !!,
werkheiser, undefeated, poor, shit

Table 2: For each domain the percentage of target
domain words (types) that are unseen in the source
together with the most frequent OOV words.

ing the 10-bit cluster prefix (Sun et al., 2011; Chan
and Roth, 2010). For the domain adaptation exper-
iments, we use ukWaC corpus-induced clusters as
bridge between domains. We limited the vocabu-
lary to that in ACE 2005, which are approximately
16k words. Following previous work, we left case
intact in the corpus and induced 1,000 word clus-
ters from words appearing at least 100 times.11

DA baseline We compare our approach to in-
stance weighting (Jiang and Zhai, 2007). We mod-
ified SVM-light-TK such that it takes a parameter
vector βi, .., βm as input, where each βi represents
the relative importance of example i with respect
to the target domain (Huang et al., 2007; Wid-
mer, 2008). To estimate the importance weights,
we train a binary classifier that distinguishes be-
tween source and target domain instances. We
consider the union of the three target domains as
target data. To train the classifier, the source in-
stances are marked as negative and the target in-
stances are marked as positive. Then, this classi-

11Clusters are available at http://disi.unitn.it/ikernels/
RelationExtraction

Prior Work: Type P R F1
Zhang (2006), tree only K,yes 74.1 62.4 67.7
Zhang (2006), linear K,yes 73.5 67.0 70.1
Zhang (2006), poly K,yes 76.1 68.4 72.1
Sun & Grishman (2011) F,yes 73.4 67.7 70.4
Jiang & Zhai (2007) F,no 73.4 70.2 71.3
Our re-implementation: Type P R F1
Tree only (PET Zhang) K,yes 70.7 62.5 66.3
Linear composite K,yes 71.3 66.6 68.9
Polynomial composite K,yes 72.6 67.7 70.1

Table 3: Comparison to previous work on the 7 re-
lations of ACE 2004. K: kernel-based; F: feature-
based; yes/no: models argument order explicitly.

fier is applied to the source data. To obtain the
weights βi, we convert the SVM scores into pos-
terior probabilities by training a sigmoid using the
modified Platt algorithm (Lin et al., 2007).12

6 Results

6.1 Alignment to Prior Work

Although most prior studies performed 5-fold
cross-validation on ACE 2004, it is often not clear
whether the partitioning has been done on the in-
stance or on the document level. Moreover, it is
often not stated whether argument order is mod-
eled explicitly, making it difficult to compare sys-
tem performance. Citing Wang (2008), “We feel
that there is a sense of increasing confusion down
this line of research”. To ease comparison for fu-
ture research we use the same 5-fold split on the
document level as Sun et al. (2011)13 and make
our system publicly available (see Section 5).

Table 3 shows that our system (bottom) aligns
well with the state of the art. Our best sys-
tem (composite kernel with polynomial expan-
sion) reaches an F1 of 70.1, which aligns well to
the 70.4 of Sun et al. (2011) that use the same data-
split. This is slightly behind that of Zhang (2006);
the reason might be threefold: i) different data par-
titioning; ii) different pre-processing; iii) they in-
corporate features from additional sources, i.e. a
phrase chunker, dependency parser and semantic
resources (Zhou et al., 2005) (we have on aver-
age 9 features/instance, they use 40). Since we
focus on evaluating the impact of semantic simi-
larity in tree kernels, we think our system is very
competitive. Removing gold entity and mention

12Other weightings/normalizations (like LDA) didn’t im-
prove the results; best was to take the posteriors and add c.

13
http://cs.nyu.edu/˜asun/pub/ACL11_CVFileList.txt
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information results in a significant F1 drop from
66.3% to 54.2%. However, in a realistic setting
we do not have gold entity info available, espe-
cially not in the case when we apply the system
to any kind of text. Thus, in the domain adapta-
tion setup we assume entity boundaries given but
not their label. Clearly, evaluating the approach on
predicted mentions, e.g. Giuliano et al. (2007), is
another important dimension, however, out of the
scope of the current paper.

6.2 Tree Kernels with Brown Word Clusters

To evaluate the effectiveness of Brown word clus-
ters in tree kernels, we evaluated different instance
representations (cf. Figure 2) on the ACE 2005 de-
velopment set. Table 4 shows the results.

bc-dev P R F1
baseline 52.2 41.7 46.4
replace word 49.7 38.6 43.4
replace pos 56.3 41.9 48.0
replace pos only mentions 55.3 41.6 47.5
above word 54.5 42.2 47.6
above pos 55.8 41.1 47.3

Table 4: Brown clusters in tree kernels (cf. Fig 2).

To summarize, we found: i) it is generally a bad
idea to dismiss lexical information completely,
i.e. replacing or ignoring terminals harms perfor-
mance; ii) the best way to incorporate Brown clus-
ters is to replace the Pos tag with the cluster bit-
string; iii) marking all words is generally better
than only mentions; this is in contrast to Sun et
al. (2011) who found that in their feature-based
system it was better to add cluster information
to entity mentions only. As we will discuss, the
combination of syntax and semantics exploited in
this novel kernel avoids the necessity of restricting
cluster information to mentions only.

6.3 Semantic Tree Kernels for DA

To evaluate the effectiveness of the proposed ker-
nels across domains, we use the ACE 2005 data
as testbed. Following standard practices on ACE
2004, the newswire (nw) and broadcast news (bn)
data from ACE 2005 are considered training data
(labeled source domain). The test data consists
of three targets: broadcast conversation, telephone
conversation, weblogs. As we want to build a sin-
gle system that is able to handle heterogeneous
data, we do not assume that there is further unla-

beled domain-specific data, but we assume to have
a large unlabeled corpus (ukWaC) at our disposal
to improve the generalizability of our models.

Table 5 presents the results. In the first three
rows we see the performance of the baseline
models (PET, BOW and BOW without mark-
ing). In-domain (col 1): when evaluated on the
same domain the system was trained on (nw+bn,
5-fold cross-validation). Out-of-domain perfor-
mance (cols 2-4): the system evaluated on the
targets, namely broadcast conversation (bc), tele-
phone conversation (cts) and weblogs (wl). While
the system achieves a performance of 46.0 F1
within its own domain, the performance drops to
45.3, 43.4 and 34.0 F1 on the target domains, re-
spectively. The BOW kernel that disregards syn-
tax is often less effective (row 2). We see also
the effect of target entity marking: the BOW ker-
nel without entity marking performs substantially
worse (row 3). For the remaining experiments we
use the BOW kernel with entity marking.

Rows 4 and 5 of Table 5 show the effect of
using instance weighting for the PET baseline.
Two models are shown: they differ in whether
PET or BOW was used as instance representa-
tion for training the discriminative classifier. In-
stance weighting shows mixed results: it helps
slightly on the weblogs domain, but does not help
on broadcast conversation and telephone conversa-
tions. Interestingly, the two models used to obtain
the weights perform similarly, despite the fact that
their performance differs (F1: 70.5 BOW, 73.5
PET); it turns out that the correlation between the
weights is high (+0.82).

The next part (rows 6-9) shows the effect of en-
riching the syntactic structures with either Brown
word clusters or LSA. The Brown cluster ker-
nel applied to PET (P WC) improves performance
over the baseline over all target domains. The
same holds also for the lexical semantic kernel
based on LSA (P LSA), however, to only two out
of three domains. This suggests that the two ker-
nels capture different information and a combined
kernel might be effective. More importantly, the
table shows the effect of adding Brown clusters or
LSA semantics to the BOW kernel: it can actually
hurt performance, sometimes to a small but other
times to a considerably degree. For instance, WC
applied to PET achieves an F1 of 47.0 (baseline:
45.3) on the bc domain, while applied to BOW it
hurts performance significantly, i.e. it drops from
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nw+bn (in-dom.) bc cts wl
Baseline: P: R: F1: P: R: F1: P: R: F1: P: R: F1:
PET 50.6 42.1 46.0 51.2 40.6 45.3 51.0 37.8 43.4 35.4 32.8 34.0
BOW 55.1 37.3 44.5 57.2 37.1 45.0 57.5 31.8 41.0 41.1 27.2 32.7
BOW no marking 49.6 34.6 40.7 51.5 34.7 41.4 54.6 30.7 39.3 37.6 25.7 30.6
PET adapted: P: R: F: P: R: F: P: R: F: P: R: F:
IW1 (using PET) 51.4 44.1 47.4 49.1 41.1 44.7 50.8 37.5 43.1 35.5 33.9 34.7
IW2 (using BOW) 51.2 43.6 47.1 49.1 41.3 44.9 51.2 37.8 43.5 35.6 33.8 34.7
With Similarity: P: R: F1: P: R: F1: P: R: F1: P: R: F1:
P WC 55.4 44.6 49.4 54.3 41.4 47.0 55.9 37.1 44.6 40.0 32.7 36.0
B WC 47.9 36.4 41.4 49.5 35.2 41.2 53.3 33.2 40.9 31.7 24.1 27.4
P LSA 52.3 44.1 47.9 51.4 41.7 46.0 49.7 36.5 42.1 38.1 36.5 37.3
B LSA 53.7 37.8 44.4 55.1 33.8 41.9 54.9 32.3 40.7 39.2 28.6 33.0
P+P WC 55.0 46.5 50.4 54.4 43.4 48.3 54.1 38.1 44.7 38.4 34.5 36.3
P+P LSA 52.7 46.6 49.5 53.9 45.2 49.2 49.9 37.6 42.9 37.9 38.3 38.1
P+P WC+P LSA 55.1 45.9 50.1 55.3 43.1 48.5† 53.1 37.0 43.6 39.9 35.8 37.8†

Table 5: In-domain (first column) and out-of-domain performance (columns two to four) on ACE 2005.
PET and BOW are abbreviated by P and B, respectively. If not specified BOW is marked.

45.0 to 41.2. This is also the case for LSA ap-
plied to the BOW kernel, which drops to 41.9. On
the cts domain this is less pronounced. Only on
the weblogs domain B LSA achieves a minor im-
provement (from 32.7 to 33.0). In general, dis-
tributional semantics constrained by syntax (i.e.
combined with PET) can be effectively exploited,
while if applied ‘blindly’ – without the guide of
syntax (i.e. BOW) – performance might drop, of-
ten considerably. We believe that the semantic in-
formation does not help the BOW kernel as there is
no syntactic information that constrains the appli-
cation of the noisy source, as opposed to the case
with the PET kernel.

As the two semantically enriched kernels,
PET LSA and PET WC, seem to capture different
information we use composite kernels (rows 10-
11): the baseline kernel (PET) summed with the
lexical semantic kernels. As we can see, results
improve further: for instance on the bc test set,
PET WC reaches an F1 of 47.0, while combined
with PET (PET+PET WC) this improves to 48.3.
Adding also PET LSA results in the best perfor-
mance and our final system (last row): the com-
posite kernel (PET+PET WC+PET LSA) reaches
an F1 of 48.5, 43.6 and 37.8 on the target domains,
respectively, i.e. with an absolute improvement of:
+3.2%, +0.2% and +3.8%, respectively. Two out
of three improvements are significant at p < 0.05
(indicated by † in Table 5). Moreover, the system
also improved in its own domain (first column),

therefore having achieved robustness.
By performing an error analysis we found that,

for instance, the Brown clusters help to general-
ize locations and professions. For example, the
baseline incorrectly considered ‘Dutch filmmaker’
in a PART-WHOLE relation, while our system
correctly predicted GEN-AFF(filmmaker,Dutch).
‘Filmmaker’ does not appear in the source, how-
ever ‘Dutch citizen’ does. Both ‘citizen’ and ‘film-
maker’ appear in the same cluster, thereby helping
the system to recover the correct relation.

bc cts wl
Relation: BL SYS BL SYS BL SYS
PART-WHOLE 37.8 43.1 59.3 52.3 30.5 36.3
ORG-AFF 60.7 62.9 35.5 42.3 41.0 42.0
PHYS 35.3 37.6 25.4 28.7 25.2 26.9
ART 20.8 37.9 34.5 43.5 26.5 40.3
GEN-AFF 30.1 33.0 16.8 18.6 21.6 28.1
PER-SOC 74.1 74.2 66.3 63.1 42.6 48.0
µ average 45.3 48.5 43.4 43.6 34.0 37.8

Table 6: F1 per coarse relation type (ACE
2005). SYS is the final model, i.e. last row
(PET+PET WC+PET LSA) of Table 5.

Furthermore, Table 6 provides the performance
breakdown per relation for the baseline (BL) and
our best system (SYS). The table shows that our
system is able to improve F1 on all relations for
the broadcast and weblogs data. On most rela-
tions, this is also the case for the telephone (cts)
data, although the overall improvement is not sig-
nificant. Most errors were made on the PER-SOC
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relation, which constitutes the largest portion of
cts (cf. Figure 3). As shown in the same figure,
the relation distribution of the cts domain is also
rather different from the source. This conversation
data is a very hard domain, with a lot of disflu-
encies and spoken language patterns. We believe
it is more distant from the other domains, espe-
cially from the unlabeled collection, thus other ap-
proaches might be more appropriate, e.g. domain
identification (Dredze et al., 2010).

7 Conclusions and Future Work

We proposed syntactic tree kernels enriched by
lexical semantic similarity to tackle the portabil-
ity of a relation extractor to different domains.
The results of diverse kernels exploiting (i) Brown
clustering and (ii) LSA show that a suitable com-
bination of syntax and lexical generalization is
very promising for domain adaptation. The pro-
posed system is able to improve performance sig-
nificantly on two out of three target domains (up
to 8% relative improvement). We compared it to
instance weighting, which gave only modest or
no improvements. Brown clusters remained un-
explored for kernel-based approaches. We saw
that adding cluster information blindly might ac-
tually hurt performance. In contrast, adding lex-
ical information combined with syntax can help
to improve performance: the syntactic structure
enriched with lexical information provides a fea-
ture space where syntax constrains lexical similar-
ity obtained from unlabeled data. Thus, seman-
tic syntactic tree kernels appear to be a suitable
mechanism to adequately trade off the two kinds
of information. In future we plan to extend the
evaluation to predicted mentions, which necessar-
ily includes a careful evaluation of pre-processing
components, as well as evaluating the approach on
other semantic tasks.
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