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Abstract

This paper describes a novel application of
NLP models to detect denial of service attacks
using only social media as evidence. Individ-
ual networks are often slow in reporting at-
tacks, so a detection system from public data
could better assist a response to a broad at-
tack across multiple services. We explore NLP
methods to use social media as an indirect
measure of network service status. We de-
scribe two learning frameworks for this task:
a feed-forward neural network and a partially
labeled LDA model. Both models outperform
previous work by significant margins (20% F1
score). We further show that the topic-based
model enables the first fine-grained analysis of
how the public reacts to ongoing network at-
tacks, discovering multiple “stages” of obser-
vation. This is the first model that both de-
tects network attacks (with best performance)
and provides an analysis of when and how the
public interprets service outages. We describe
the models, present experiments on the largest
twitter DDoS corpus to date, and conclude
with an analysis of public reactions based on
the learned model’s output.

1 Introduction

Distributed Denial of Service (DDoS) attacks have
become more frequent and more severe in their
impact. Coordinated attacks across several ser-
vices are now common, yet there are fewer meth-
ods to detect multi-network events. Research into
detecting and preventing single attacks focuses on
direct evidence based on characteristics of a net-
work itself, such as monitoring abnormal traffic.
This paper instead investigates an aytpical source
for multiple attacks with indirect evidence: social
media text. Do users of attacked systems post on
social media? What can be learned from com-
ments? Can NLP learning models extract enough
information from user posts to detect attacks? Pre-

vious work on attack detection with social media
is sparse, and focused on detecting trending words.
This paper is the first to learn models of language
without ‘attack’ dictionaries and seed words. The
goal is the real-time detection of attacks without
network data. Our secondary goal is to illustrate
NLP applications to computer security topics.

Research on information extraction from social
media has shown that many types of events in the
world can be reliably detected from the language
that users post. Several approaches have been
shown effective in identifying events like earth-
quakes (Sakaki et al., 2010), concerts and prod-
uct releases (Ritter et al., 2012), and other natural
disasters (Neubig et al., 2011). Detecting DDoS
attacks is not too dissimilar from these goals. An
attack is a real event in the world, and it takes a
community by surprise. This paper thus adopts
ideas from NLP, but applies them to the unique
application of DDoS detection.

Social media is obviously not the only way (nor
the most direct) to monitor network services and
attacks. There are several commercial services
that directly measure outages, such as norsecorp1.
These perform direct monitoring of network re-
sponse. We do not propose social media as a bet-
ter alternative, but rather as an alternative that en-
hances direct monitoring. Social media also brings
its own unique benefits. For instance, social media
does not require a priori knowledge of which net-
works should be monitored. It can also help detect
“soft” outages like slowdowns and account block-
ages, things that direct monitoring cannot always
detect. Therefore, this paper is not suggesting a
replacement, but rather a new source of valuable
information. It is a monitoring architecture that is
not constrained by a predefined list of services.

Our goal in using social media is driven by the

1http://map.norsecorp.com
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hypothesis that as a network attack unfolds, its
users go through a series of observational stages
that can be automatically learned and detected.
The first stage is a state of confusion and basic
symptom observation, as seen in the following real
tweets from Twitter:

hey linode what’s happening? I can’t login, my
servers are down and you don’t reply on mails?

is xbox live experiencing some issues?

These tweets don’t discuss an attack even though
that is what was occurring. Later stages then de-
velop into direct commentary as the community
coelesces to a belief that an attack is the cause:

Breaking: Band of America website rumored to
be under DDoS attack.

Citi Bank & BofA under Massive DDoS attack

We show that our proposed LDA-based model
can effectively identify these stages. There is very
little previous work in this area, and that which
exists focuses entirely on the second stage. Ritter
et al. (2015) proposed models that include hard-
coded keywords like ‘DDoS’ and phrases like
‘<entity> is down’. Their work helped identify
attacks with social media, but these identifications
tend to be after the news has already reported
it. Early symptoms that are discussed don’t use
words like ‘DDoS’ because the conclusion has not
yet been drawn. We thus propose the first learn-
ing models that identify early attack discussions:
the first is a neural network, and the second is a
broader topic model that provides better insight
into the evolution of an attack.

Finally, our last goal is to model the themes
and topics that users notice during network at-
tacks. This is a somewhat subjective analysis, but
it is backed by an empirical model trained from
real-world data. Not only do we empirically pro-
duce state-of-the-art results, 25% gains over pre-
vious work, we also show that our detection sys-
tem learns topics of discussion previously uninves-
tigated in the security field.

The core contributions of this paper are as fol-
lows: (1) a 25% improvement over previous work
on attack detection, (2) we present the first neu-
ral network results on detecting network attacks
from social media, (3) we present a partially la-
beled LDA model for detecting network attacks
with state-of-the-art results, (4) the PLDA enables
the first analysis of the evolution of an attack as
seen through its users, and (5) we make available
the largest list of historical DDoS attacks to date.

2 Previous Work

The most relevant line of research to this paper is
event extraction from social media. Space pro-
hibits describing all work; the major approaches
vary in levels of supervision. Ritter et al. (2012)
used a Latent Dirichlet Allocation model to iden-
tify events in text without labeled data. They
showed you can cluster and extract events like
concerts, movies, and performances into a calen-
dar. General event detection from social media
has continued in several threads (Benson et al.,
2011; Popescu et al., 2011; Anantharam et al.,
2015; Wei, 2016; Zhou et al., 2017). Guo et al.
(2013) link tweets to news stories using an anno-
tated dataset. Sakaki et al. (2010) detect earth-
quake events by monitoring tweets with keywords
like ‘earthquake’. This is similar in goal to our
paper, but different in approach and brittle in its
application. We crucially do not assume that users
use known keywords and phrases.

We take inspiration from the thread of work
on flu detection (Lamb et al., 2013; Broniatowski
et al., 2013). Their work leverages mentions of
an event (‘caught’, ‘sick’, ‘flu’), and then uses hu-
man annotators to label these mentions as relevant
to the desired event (flu). We also identify men-
tions of an event, but we crucially differ by not
knowing event words a priori. We believe a typical
user does not know what a DDoS attack is, so we
cannot assume certain language will be used. A
major contribution of this work is the first analysis
of how the (perhaps uninformed) public perceives
DDoS attacks as they occur.

The first work (to our knowledge) on attack de-
tection from Twitter was Motoyama et al. (2010).
They tracked a single phrase “X is down” and
experimented with whether outages could be de-
tected from its counts. They use a trend detection
formula to notice increases of this one phrase to
trigger an alert. We compare against this strong
baseline later. The work by Kergl et al. (2016)
uses social media to identify users who discuss
zero-day exploits. While not directly related to
the work in this paper, its success reinforces the
hypothesis that social media contains useful data
for computer security monitoring.

The main thread in this area is the learning
model from Ritter et al. (Ritter et al., 2015) and
follow-on work (Kergl, 2015; Chang et al., 2016).
They proposed a weakly supervised learner to
identify cybersecurity events from Twitter. They
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Attacked Services (dd-mm-yy)
Ancestry.com 16-06-14 Lib. Congress 18-07-16
BBC Website 14-03-15 Newsweek 29-09-16
Call of Duty 20-09-14 Planned Parent. 29-07-15
DNS 21-10-16 Reddit 19-04-13
Github 27-03-15 Spamhaus 18-03-13

Table 1: A sample of 10 DDoS events in our dataset. A
20 day span is collected around each attack date.

collected tweets that contain the word ‘DDoS’,
and then collected a set of known network attack
days. The known days provided a training set from
which they trained this weakly-supervised clas-
sifier on the ‘DDoS’ tweets. An important con-
straint in their approach, similar to flu research, is
the need to use a seed word(s). Seed words enable
the collection of a very relevant training set, but
it limits the system because it depends on social
media posts to use these words, and more impor-
tantly, to actually know that a DDoS is happening.
We instead hypothesize that attacks are preceded
by users who first observe symptoms of the attack,
and don’t directly discuss a DDoS or use related
attack words. Our analysis shows we match sev-
eral orders of magnitude more tweets.

3 Datasets

We manually created a dataset of historical DDoS
attacks that include the entity attacked and the date
of attack. Most past attacks are difficult to identify
hour ranges, so we used a full 24-hour day as our
granularity. We included 6 attacks with sufficient
volume from previous work (Ritter et al., 2015),
but we grew this set to 50 attacks based on our own
investigations into recent years, mostly through
web search results for ‘DDoS attacks’. Table 1
lists some of these for illustration of its diversity.
The full list is at www.usna.edu/Users/cs/
nchamber/data/ddos/

For each of these known attacks, we collected
tweets that contained the attacked entity’s name
in a 20-day period: 17 days prior to the attack,
1 day on the attack, and 2 days following. We
wanted a sufficient lead up to the attack to include
previous work’s trending model (Motoyama et al.,
2010), and to provide non-attack days for evalua-
tion. The days surrounding the known attack date
are labeled NOT-ATTACK, and the attack day it-
self as ATTACK. Sometimes an attack lasted longer
than a single day, in which case the days following
were also labeled as ATTACK, as appropriate.

The historical attacks span the years 2012-2016.

We split the data so that years 2012, 2015, and
2016 comprise the training set, 2013 is the de-
velopment set, and the year 2014 is the test set
only used for computing final experiment num-
bers. Splitting on years (rather than months or
entities) guards against test set pollution into our
training set. The evaluation on the 2014 test set is
thus an unbiased experiment because nothing from
the entire year is included in training. For the ex-
periments, we use the union of training and devel-
opment to train the final models that are then used
to evaluate on the test year 2014. There are 200
test days in 2014, 50 in dev, and ˜500 in training.

The full dataset consists of 50 attack days over
approximately 800 days and 2 million tweets. The
only previous work on this area used seed words to
pull out around 9-10 thousand tweets. Our dataset
is more than 2 orders of magnitude larger. The
reason is due to the larger number of attacks we
collected, but notably our tweets are more diverse
and varied because we don’t require hard-coded
target words and phrases to match.

Formally, the dataset is 800 labeled datums:

di = (Entity,Date, Tweets, Label) (1)

where di ∈ D and D is the set of all days. Entity
is the attacked network service, Date is the cal-
endar date, and Tweets are all tweets on that date
mentioning that entity. Label is a binary variable:
ATTACK or NOT-ATTACK. Even though the day
following an attack often includes attack discus-
sion, it is still labeled NOT-ATTACK. Only if the at-
tack was ongoing is the next day labeled ATTACK.

4 Models

Two primary goals motivate the models we pro-
pose and evaluate. The first goal is the automatic
classification of attack and non-attack events. We
propose the first neural network for this task, and
move on to a generative model based on topic
models. We evaluate their relative performance
and compare against baselines from prior work.

The second goal is a model that enables anal-
ysis of user behavior during the evolution of an
attack. What do people notice? What do people
focus on? These are important questions for the
security community that NLP models can help an-
swer. We present a brief subjective study using the
generative model, show how learned topics change
over time, and discuss the data’s implications.
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4.1 Task Formulation
As discussed in Section 3, our input is labeled
datums: di = (Entity,Date, Tweets, Label).
Each datum in the training set has a known label
of ATTACK or NOTATTACK based on our histori-
cal knowledge of which entities were attacked on
which days. We thus formulate the task as a binary
classification over 24 hour days. We train models
with the labeled training set, and report final num-
bers on test. In order to tune parameters, we use
the development set to run grid searches over the
models’ parameters. The test set was always ex-
cluded from these until the final experiments.

4.2 Logistic Regression
Our first baseline model is logistic regression with
word-based features. The following were used:

Unigrams. All words in the tweets were lower-
cased and punctuation stripped.
Bigrams. All bigrams are included & lowercased.
Start and stop symbols are used for tweet bound-
aries, and punctuation included as separate tokens.
Bigram/Trigram Patterns. Since we know the
entity, we parameterize the entity’s mention in
each tweet, and build bigrams and trigrams around
them. For instance, the phrase “reddit is slow” is
included as a trigram feature “X is slow”. This
allows learning across instances, so “spamhaus is
slow” is included as the same feature.

We use the Stanford CoreNLP toolkit with de-
fault settings to train the model. We removed all
features that occurred only once. This model is
referred to as LogisticReg below.

4.3 Neural Network Models
Neural networks have made significant advance-
ments in many NLP areas. Two of the main rea-
sons for this are (1) improved representation of
the features, and (2) stacking of hidden layers pro-
vides a better data fit.

We experimented with two feed-forward neural
networks using word embeddings. We first trained
a simple one-layer neural network that is similar to
logistic regression, but with embeddings as input
(instead of frequency counts). This is the Neural-
1 model. We then trained a two-layer network with
hidden layer h of size m, and a softmax output
layer to the binary label task. This is the Neural-2
model.

The input to both of these models is as a Con-
tinuous Bag of Words (CBOW) model (Mikolov

et al., 2013). Unlike logistic regression, the only
features input to the network are unigrams (a
tweet’s individual tokens). Each unigram u has
a word embedding xu of length n, and they are all
input as a weighted average. The reader is referred
to Mikolov (2013) for more CBOW background.

We do not use pre-trained word embeddings,
but instead learn them from our data. The embed-
ding values are initialized randomly [0, 1] from the
uniform distribution. We used DyNet as our mod-
eling toolkit (Neubig et al., 2017).

Overfitting is often a problem with neural net-
works, and we quickly found our models doing
so. We thus applied 0.5 dropout for regularization
(Srivastava et al., 2014). We experimented with
other dropout values but did not see reliable gains
or losses, so kept it at the typical 0.5 value.

We trained other networks without word em-
beddings, but instead “one-hot vectors” where the
vector is the size of the vocabulary. This model did
not perform as well and required more memory,
so we do not report its results. Additional hidden
layers did not improve either, as expected from the
observed overfitting.

4.4 Constrained Topic Modeling

While the neural models above improve over pre-
vious work and baselines, they are difficult to in-
terpret what is actually learned. One of the ap-
plications of this paper is to analyze what people
discuss during network attacks. The hidden lay-
ers and word embeddings are opaque and difficult
from which to draw conclusions.

In contrast, a generative model that represents
words explicitly as probability distributions allows
for easier post-analysis. It also may generalize bet-
ter to this task because training data is more sparse
and noisy. While we have 2 million tweets, orders
of magnitude more than previous work, this is still
modest in size with 800 days. To make matters
worse, the dataset is biased toward NOTATTACK.
95% of the training set is NOTATTACK, leaving
few training instances that are actually labeled as
ATTACK. As shown in the next section, the neu-
ral models tend to overfit to these small signals.
Further, we observed that online discussions go
through different stages (Section 5.4), and the neu-
ral model merges stages to its detriment.

We thus propose a model inspired by Latent
Dirichlet Allocation (LDA) (Blei et al., 2003), but
a model carefully designed to the unique applica-

1629



tion at hand. For readers unfamiliar with LDA, the
model can be thought of as a clustering algorithm,
and an overview of LDA and its variants can be
found in Blei’s survey (Blei, 2012).

4.4.1 LDA for Security Events
A traditional LDA model can learn general top-
ics on our dataset with the hope that attack topics
bubble up. Our initial experiments found this to
be insufficient and the non-attack days were full
of distracting topics.

For the goal of analyzing attack discussion, we
need to encourage the LDA model to learn attack-
specific topics. We draw heavily from Labeled
LDA (Ramage et al., 2009). Each word is assigned
a topic as in standard LDA, but topics can have a
known label from the document. This is relevant
to this paper because we know which days are at-
tacks (in training). Thus, when a tweet is on an at-
tack day, we assign the tweet a label ATTACK, and
bias the Labeled LDA learner to assign its words
to an attack-related topic.

What labels do we have in our data? ATTACK

and NOTATTACK labels are first, but we also know
which entities are mentioned in tweets, providing
labels to learn entity-specific topics. We can la-
bel a tweet about reddit as REDDIT, and bias the
Labeled LDA algorithm to assign a reddit-specific
topic. The following tweet is an example:

reddit isn’t responding maybe DNS is wrong

This tweet mentions two entities (reddit and dns),
and it occurs on a known attack day for reddit in
training. This tweet thus has 3 labels (attack, red-
dit, dns). The tweet’s tokens can draw from 1 of 3
topics, which is good but a bit constraining. One
of the premises of this paper is that people discuss
attacks on social media in a variety of ways (not
just one topic). They might discuss hackers, the
DDoS attack itself, or just general downtime. The
vanilla Labeled LDA (Ramage et al., 2009) is then
too strict, but there is a multi-topic extension in
the Partially Labeled Dirichlet Allocation (PLDA)
(Ramage et al., 2011). PLDA is a version that in-
stead of having one topic per label, it learns Nl

topics for each label l. For our example tweet, to-
kens can now be labeled with 1 of

∑
lNl topics.

We use Nattack = 5 and Nreddit = Ndns = 5
in our experiments2, so this tweet would sample
from 15 topics.

2This is about reddit, but each company has its own 5 top-
ics. Experiments have 40 companies for total 200 topics.

Formally, let a tweet be defined as a document
d with words w ∈ Wd. Each document has a set
of labels Λ. This set Λ always contains the BACK-
GROUND label to capture general twitter conver-
sations. Further, if a network or company is men-
tioned in the document, Λ also contains the com-
pany’s label (e.g., MICROSOFT). Finally, the label
ATTACK is added to Λ if d is an attack day andWd

includes the attacked network’s name. Each word
w ∈ d has a latent label l and a latent topic zl. For
readers familiar with plate diagrams, this diagram
is shown in Figure 1. Readers will notice its simi-
larity to Ramage et al. (2009) with the addition of
a new β parameter and the important change that
the attack label is observed in training, but unob-
served in test. When observed (in training), we
favor assigning words to attack topics. When un-
observed, we want to dissuade but still allow for it
when the text strongly favors attack topics. To this
end, our PLDA differs from standard use in that ψ
is generated from a non-symmetric dirichlet with
hyperparameters v (a vector of length

∑
lNl) de-

fined as:

vi =

{
α, if i 6∈ AttackTopics
β, if i ∈ AttackTopics & attack 6∈ Λ

β ∗ 10, if i ∈ AttackTopics & attack ∈ Λ

This is a non-symmetric dirichlet prior that en-
ables attack labels to be chosen (β) without an
observed attack day. Every tweet must be able
to sample from attack topics because we need to
label future unknown (unlabeled) attacks. The
PLDA in the literature assumes full labeling at all
times, but our task is more difficult. When AT-
TACK is observed, its smoothing parameter’s value
is β∗10 because of our heightened certainty, rather
than simply β when unobserved.

The number of attack topicsNa and background
topics Nb was chosen empirically from dev set
performance. For simplicity and to avoid overfit-
ting, we chose a single number M = 5 of com-
pany topics ∀c Nc = M that is the same across all
companies and also Nattack = M . Only Nb was
varied in our parameter tuning stage to discover
how many background topics were necessary.

Space prohibits a full mathematical description
of PLDA, so we direct the reader to Ramage et
al. (2011) for details. Those unfamiliar with the
above formalities can think of it as a soft clustering
of words that is accomplished through sampling.
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Figure 1: Plate diagram of the partially labeled topic
model (PLDAttack). Dotted boxes are example values
of a non-attack tweet discussing Reddit.

4.4.2 Inference and Classification
Inference in this model is performed with col-
lapsed Gibbs sampling, sampling l and zl in turn
while holding all other variables constant. A
single iteration requires looping over the entire
dataset and assigning labels (topics) to each token
on each day. We repeat this process until conver-
gence of the joint probability of the model. After
convergence, we hold distributions θ, ψ constant
and run 20 more sampling iterations. Each word is
then assigned the topic that was sampled the most
in the 20 iterations.

Once sampling completes, this PLDAttack
model provides us two very useful tools. First,
the assigned topics enables us to use it as a classi-
fier for our target task: DDoS detection from so-
cial media. Second, the topics themselves allow
us to create timelines of discussions about DDoS
attacks. This provides a higher-level analysis of
what people say (Learned Topics).

With all words labeled, we want the model to
make a prediction about an entity e on a given
day d. Was the entity attacked3? We compute
the probability of an attack using the labels them-
selves without any modification:

P (attack|d) =

∑
w∈Wd

1{zw ∈ Attack}
|Wd|

(2)

where |Wd| is the number of words in all tweets
on day d and Attack is the set of attack topics.
1{x} is the indicator function. If this probability
is greater than a threshold, the entity/day is labeled
as an attack. Otherwise, it is not an attack.

The cutoff threshold depends on a typical prob-
ability that is assigned to tweets, and how frequent

3Or, is the entity currently under attack? This paper is an
early detection attempt, leaving live-tracking to future work.

an entity is actually mentioned on a given day.
We use the development set to identify the opti-
mal cutoff to maximize our F1 score.

5 Evaluation and Results

All experiments are conducted on the dataset de-
scribed in Datasets. The task is a binary classifi-
cation of ATTACK or NOTATTACK given a day of
tweets. All parameters are optimized on the de-
velopment set: we treat attack days as known on
training days, but hidden from the development
and test days. We calculate F1 score on the de-
velopment attack days, and optimize parameters
using a basic grid search. For the final reported
results, we combine train+dev into one observed
training set, and the test set is now included in
sampling, but with unobserved attack days. Since
the PLDAttack model is probabilistic, all reported
numbers are an average of 10 independent runs.

We use ATTACK F1 as the main evaluation tar-
get; the harmonic mean between precision and re-
call. Applications overly concerned with miss-
ing attacks would optimize to recall R. We chose
F1 as a happy balance between a quality classifier
(good precision P ) and a useful classifier (good re-
call R). We report all three scores for both the AT-
TACK and NOTATTACK labels, but optimize to F1
during parameter search on the development set.

5.1 Trending Baselines

Entity Trending: This baseline follows the hy-
pothesis that a website under attack is mentioned
more than usual, and language analysis is not re-
quired. There is credence to this idea. Much of our
data includes a spike in discussion on the attack
day (however, some non-attack days show similar
frequency spikes). We model frequency trending
with an exponential decay function similar to that
in Motoyama et al. (2010). It uses an Exponen-
tially Weighted Moving Average:

At = α ∗ nt + (1− α) ∗At−1 (3)

where At is the EWMA of day t, nt is the number
of tweets on day t, and α determines how the cur-
rent day’s count affects the moving average. We
then need a threshold Tt to determine when nt is
trending. This is based on a moving deviation σ2:

Dt = nt −At−1 (4)
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Non-Attack Attack
P R F1 P R F1

Freq Baseline .99 .87 .92 .29 .83 .43
Motoyama’10 .97 .94 .95 .35 .58 .44
LogisticReg .97 .75 .85 .14 .67 .24
Neural-1 .96 .97 .96 .54 .47 .49
Neural-2 .97 .96 .96 .55 .53 .53
PLDAttack .96 .96 .96 .61 .52 .55

Table 2: Results on the held-out test set of 200 test
datums. Motoyama’10 is a trending phrase baseline.

σ2t = β ∗D2
t + (1− β) ∗ σ2n−1 (5)

Given this deviation, the threshold is then:

Tt = Mt−1 + ε ∗ σt−1 (6)

If nt > Tt for a day, we signal an ATTACK.

Pattern Trending: This modified baseline ex-
actly duplicates Motoyama et al. (2010). Their
approach looks for trending mentions that match
the pattern, ‘X is down’. The X is substituted with
the company’s name. We use the same equation
6, but frequency nt is defined as how many tweets
contain the pattern (instead of just ‘X’).

5.2 Experiment Results

The test set results for baselines and models are
shown in Table 2. All improvements are statis-
tically significant as indicated using McNemar’s
two-tailed test. The trending baselines have high
recall. When an attack is happening, the network
does indeed trend on social media. Precision is
low, however, because non-security events also
cause discussions. The neural models outperform
the baselines, and a hidden layer (Neural-2) is def-
initely needed for increased detection. The train-
ing set of 500 documents is still small for neural
training, though. Neural models have many pa-
rameters, and they overfit to our training set de-
spite regularization with dropout, reducing dimen-
sions, and removing hidden layers. Even still, we
improved over the Motoyama baseline by 20% rel-
ative F1.

PLDA (PLDAttack) showed the highest preci-
sion when classifying an ATTACK. Since its recall
was similar to the neural models, it produced the
best F1 score. This is a 25% relative improvement
over previous work. PLDAttack generalizes to the
dataset slightly better than the neural models.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
issues after attack down down

working service ddos servers anonymous
having #news under site megaupload
issue hit twitter hacked takes
email attack dns website sites
update website attacks goes music

services hackers massive taking claims
problem #tech services web doj

Table 3: The top words in each of 5 attack topics
learned from the entire train/test dataset.

We now have two good approaches for detecting
attacks: neural models and topic modeling. The
remaining question is to analyze what people are
actually discussing, and it is here that topic mod-
eling further shines.

5.3 Learned Topics

The generative model is attractive because we can
use its learned distributions to produce insight into
what people discuss. It is more precise in our ex-
periments, and the neural models are simply too
difficult to analyze.

Table 3 shows some of the attack topics that
were learned on one of our model’s runs (results
are an average of training runs). As can be seen,
though topics are similar, they capture subtle dif-
ferences in what people discuss during an attack.
The first topic represents tweets about news sur-
rounding the event. These often contain links, and
show up after the attack is made known to news
agencies. In contrast, topic 3 is more general about
servers down and specific services such as email.
The fourth topic captures discussion about Anony-
mous and the claims that the group makes about
taking sites down. This was obviously learned
as an artifact of our data which contains several
Anonymous-related events.

One of the most useful analyses we can do with
this type of model is track topic evolution over
time. Figure 2 illustrates one attack day and the
dramatic jump of the attack topics. For simplicity,
we plot the 5 attack topics, and hide the others as
they are generally flatter across the bottom. This
shows that social media became aware on the 9th
hour, and only took one more hour to reach peak
intensity. What is perhaps most useful with a time-
line is understanding the impact of an attack on its
users. There is a fair bit of chatter the day follow-
ing the event, showing that people do not easily
forget such attacks and depending on the entity,
this could have effects on how people engage. We
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Figure 2: Attack topics during a 3-day period around a DDoS on the Planned Parenthood (PP) website. The attack
was announced at 5pm on July 29. The green topic spikes with PP’s first tweet about the DDoS. The yellow &
brown topics rise hours before the announcement. They decrease after the attack, similar to the red ‘news’ topic.

also see that Planned Parenthood (in this example)
delayed in announcing the attack. Whether this is
tactical or simply how long it took to realize the
event, PLDAttack offers a natural way to discover
just how soon patrons (or the public in general)
became aware of the issue without an announce-
ment. Decision making around these events might
be guided by helpful NLP tools such as this.

Finally, we note previous work tracked tweets
with ‘DDoS’ in it. There were ˜50 such tweets,
but our models instead matched tens of thou-
sands. Previous seed-based work cannot produce
this type of analysis.

5.4 Attack Stages in Online Discussions

To analyze the PLDAttack model’s strengths, we
split attack days into “spiking” chunks to identify
common stages of online chatter. We use topic
frequency spikes for Reddit to provide diversity
in analysis from the Planned Parenthood Figure 2.
Reddit is a community based website attacked on
April 19, 2013. We identified four distinct stages
of a DDoS attack on social media: (1) Symptom,
(2) Inference, (3) Confirmation, and (4) Resump-
tion. Figure 3 shows examples from each stage.

The Symptom Stage is the earliest sign of a
problem with user observations of the network ser-
vice. These aren’t comments about malicious at-
tacks, but statements about authentication prob-
lems and unresponsive websites. This is the most
difficult stage for a learner (false positives). Ser-
vices can have trouble for a variety of reasons, not

necessarily DDoS attacks. Some of our evalua-
tion data includes inoccuous problems, and these
caused a decrease in precision.

The Inference Stage includes guesses about the
cause of the previous stage’s symptoms. These
can and do intermix with the Symptom Stage. As
seen in the reddit examples in Figure 3, some of
the users wonder if they broke reddit rather than a
malicious act occurring. We also see an example
of someone guessing that it is a DDoS attack, but
without actual knowledge of it.

The Confirmation Stage occurs when the web-
site publicly announces an attack. Not all attacks
have a public announcement. Our error analysis
revealed this to be the cause of several false nega-
tives. When the public is not directly informed,
the learning algorithms must rely on symptoms
and inferences only. Previous work largely iso-
lated itself to attacks with a Confirmation Stage,
for instance, relying on the ‘DDoS’ keyword to be
present (Ritter et al., 2015).

Finally, the Resumption Stage is when the net-
work service is restored. The reddit examples
show people commenting on the resumption, and
making jokes about the previous situation. Simi-
lar to the Symptom Stage, this stage contributes to
false positives because it also occurs with normal
routine network problems, not just malicious acts.

5.5 Error Analysis

Identifying the four stages above led to a natu-
ral method of studying errors in our model. We
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Symptom Stage
Please come back Reddit! I’m bored.
Reddit won’t authenticate me. #lifeisover
Reddit is calling me a robot and won’t let me use it

Inference Stage
There is a DDoS attack on Reddit right now?
i broke reddit? wat? I think we crashed Reddit #wow

Confirmation Stage
wow turns out reddit is being DDoS attacked right now
Reddit is experiencing a malicious DDoS attack
Reddit’s reward for the Boston bombing? DDOS attacks.

Resumption Stage
@JpDeathBlade Reddit is back and in full force.
Reddit may be returning.
It’s ok, Reddit is back up. Go home, nothing to see here.

Figure 3: Examples from the four stages of a social
media response to DDoS attacks.

chose a sample of false positives and false nega-
tives, and manually looked at these incorrect deci-
sions to align common mistakes with how they re-
lated to the 4 stages. Looking at the false positives,
the majority are from the Symptom and Inference
Stages. Looking at false negatives, we found at-
tacks where the network did not make a public
statement, so the Confirmation Stage was missing.

These stages of course do not account for all of
the mistakes that are made. Precision is at 61%
in our best model, leaving room for improvement.
Other reasons for errors included distractor events.
For example, the Boston Bombing occurred near
the Reddit DDoS. The preceding days included
thousands of tweets talking about the attack in
Boston. This is obviously a different type of at-
tack, and the machine learners were led astray.

5.6 Robustness

A danger in many stochastic processes is finding
one good run and only reporting on those results.
We thus compare our our model across runs and
found the topics to be somewhat robust and steady.
We chose five random runs of the best perform-
ing model (the one from Figure 2) and focused on
the largest attack topic. Is this topic learned in all
runs? Not only was the same topic subjectively
learned in each run, we graphed the observed fre-
quency of this largest attack topic from 5 of the 10
runs. Not only did it maintain the same frequency,
but also the same general shape across the runs.
Space prohibits more illustration, but the graph
can be found on our data website: www.usna.
edu/Users/cs/nchamber/data/ddos/

6 Discussion

The core conclusion from our experiments is that
social media does indeed contain signals to iden-
tify DDoS attacks. Our proposed neural network
outperformed previous work (Motoyama et al.,
2010) by 20% F1, a very large margin. Even
though online users are an indirect source of evi-
dence, the 53% F1 from the neural network shows
that useful information can be extracted from text.

We further improved results with the genera-
tive PLDAttack model based on topic modeling,
achieving a smaller 4% increase over the neural
net but 25% over the prior trending approach. Al-
though neural networks have significant advan-
tages over LDA-based models, PLDAttack offers
advantages by enabling deeper analysis of what
people say, what topics are discussed, and how at-
tack discussions evolve over time on Twitter. For
instance, it enabled Figure 2 to illustrate the differ-
ent topics that people discuss during such an event.

Can these results be used in a DDoS detection
framework? We believe it can. PLDAttack recall
may not be as high as desired, but it can be in-
creased by adjusting the prediction cutoff proba-
bility λ. We empirically set the cutoff based on
dev set performance to optimize F1. However, a
detection system may desire to optimize recall at
the expense of precision, thus choosing a lower λ
and forcing the system to predict attacks more of-
ten. This would increase false positives, but with
a human in the loop, it is manageable to monitor.

This paper thus proposed two NLP models for
learning to identify DDoS attacks from social me-
dia without network data. They leverage indirect
evidence described by users when they post online
about service availability. By identifying the early
topics before public announcements, we see this
as an important step toward a broad-scale mon-
itoring system not dependent on individual net-
work reporting. We hope our datasets and models
encourage further efforts in NLP and Computer
Security. Models and data are available online:
www.usna.edu/Users/cs/nchamber/data/ddos/
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