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Abstract

Children learn the meaning of words by being
exposed to perceptually rich situations (lin-
guistic discourse, visual scenes, etc). Current
computational learning models typically sim-
ulate these rich situations through impover-
ished symbolic approximations. In this work,
we present a distributed word learning model
that operates on child-directed speech paired
with realistic visual scenes. The model inte-
grates linguistic and extra-linguistic informa-
tion (visual and social cues), handles referen-
tial uncertainty, and correctly learns to asso-
ciate words with objects, even in cases of lim-
ited linguistic exposure.

1 Introduction

Computational models of word learning typically
approximate the perceptual context that learners are
exposed to through artificial proxies, e.g., represent-
ing a visual scene via a collection of symbols such
as cat and dog, signaling the presence of a cat,
a dog, etc. (Yu and Ballard, 2007; Fazly et al.,
2010, inter alia).1 While large amounts of data
can be generated in this way, they will not display
the complexity and richness of the signal found in
the natural environment a child is exposed to. We
take a step towards a more realistic setup by intro-
ducing a model that operates on naturalistic images
of the objects present in a communicative episode.
Inspired by recent computational models of mean-
ing (Bruni et al., 2014; Kiros et al., 2014; Silberer

1See Kádár et al. (2015) for a recent review of this line of
work, and another learning model using, like ours, real visual
input.

and Lapata, 2014), that integrate distributed linguis-
tic and visual information, we build upon the Multi-
modal Skip-Gram (MSG) model of Lazaridou et al.
(2015). and enhance it to handle cross-referential
uncertainty. Moreover, we extend the cues com-
monly used in multimodal learning (e.g., objects in
the environment) to include social cues (e.g., eye-
gaze, gestures, body posture, etc.) that reflect speak-
ers’ intentions and generally contribute to the un-
folding of the communicative situation (Stivers and
Sidnell, 2005). As a first step towards developing
full-fleged learning systems that leverage all signals
available within a communicative setup, in our ex-
tended model we incorporate information regarding
the objects that caregivers are holding.

2 Attentive Social MSG Model

Like the original MSG, our model learns multimodal
word embeddings by reading an utterance sequen-
tially and making, for each word, two sets of pre-
dictions: (a) the preceding and following words, and
(b) the visual representations of objects co-occurring
with the utterance. However, unlike Lazaridou et al.
(2015), we do not assume we know the right object
to be associated with a word. We consider instead
a more realistic scenario where multiple words in
an utterance co-occur with multiple objects in the
corresponding scene. Under this referential uncer-
tainty, the model needs to induce word-object as-
sociations as part of learning, relying on current
knowledge about word-object affinities as well as on
any social clues present in the scene.

Similar to the standard skipgram, the model’s pa-
rameters are context word embeddings W′ and tar-
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get word embeddings W. The model aims at opti-
mizing these parameters with respect to the follow-
ing multi-task loss function for an utterance w with
associated set of objects U :

L(w,U) =
T∑

t=1

(`ling(w, t) + `vis(wt, U)) (1)

where t ranges over the positions in the utterance w,
such that wt is tth word. The linguistic loss function
is the standard skip-gram loss (Mikolov et al., 2013).
The visual loss is defined as:

`vis(wt, U) =
S∑

s=1

λα(wt,us)g(wt,us)

+(1− λ)h(us)g(wt,us)
(2)

where wt stands for the column of W corresponding
to word wt, us is the vector associated with object
Us, and g the penalty function

g(wt,us) =
∑
u′

max(0, γ − cos(wt,us)

+ cos(wt,u′)),
(3)

which is small when projections to the visual space
wt of words from the utterance are similar to the
vectors representing co-occurring objects, and at the
same time they are dissimilar to vectors u′ repre-
senting randomly sampled objects. The first term in
Eq. 2 is the penalty g weighted by the current word-
object affinity α, inspired by the “attention” of Bah-
danau et al. (2015). If α is set to a constant 1, the
model treats all words in an utterance as equally rel-
evant for each object. Alternatively it can be used to
encourage the model to place more weight on words
which it already knows are likely to be related to a
given object, by defining it as the (exponentiated)
cosine similarity between word and object normal-
ized over all words in the utterance:

α(wt,us) =
exp(cos(wt,us))∑
r exp(cos(wr,us))

(4)

The second term of Eq. 2 is the penalty weighted by
the social salience h of the object, which could be
based on various cues in the scene. In our experi-
ments we set it to 1 if the caregiver holds the object,
0 otherwise.

We experiment with three versions of the model.
With λ = 1 and α frozen to 1, the model reduces

let me have that

ahhah whats this

what does mom look like with the hat on

do i look pretty good with the hat on

Figure 1: Fragment of the IFC corpus where symbolic labels

ring and hat have been replaced by real images. Red frames

mark objects being touched by the caregiver.

to the original MSG, but now trained with referen-
tial uncertainty. The Attentive MSG sets λ = 1
and calculates α(wt,us) using Equation 4 (we use
the term “attentive” to emphasize the fact that, when
processing a word, the model will pay more atten-
tion to the more relevant objects). Finally, Attentive
Social MSG further sets λ = 1

2 , boosting the impor-
tance of socially salient objects.

All other hyperparameters are set to the values
found by Lazaridou et al. (2015) to be optimal af-
ter tuning, except hidden layer size that we set to
200 instead of 300 due to the small corpus (see Sec-
tion 3). We train the MSG models with stochastic
gradient descent for one epoch.

3 The Illustrated Frank et al. Corpus

Frank et al. (2007) present a Bayesian cross-
situational learning model for simulating early word
learning in first language acquisition. The model
is tested on a portion of the Rollins section of the
CHILDES Database (MacWhinney, 2000) consist-
ing of two transcribed video files (me03 and di06),
of approximately 10 minutes each, where a mother
and a pre-verbal infant play with a set of toys. By in-
specting the video recordings, the authors manually
annotated each utterance in the transcripts with a list
of object labels (e.g., ring, hat, cow) correspond-
ing to all midsize objects judged to be visible to the
infant while the utterance took place, as well as vari-
ous social cues. The dataset includes a gold-standard
lexicon consisting of 36 words paired with 17 object
labels (e.g., hat=hat, pig=pig, piggie=pig).2

2http://langcog.stanford.edu/materials/

nipsmaterials.html
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Aiming at creating a more realistic version of
the original dataset, akin to simulating a real visual
scene, we replaced symbolic object labels with ac-
tual visual representations of objects. To construct
such visual representations, we sample for each ob-
ject 100 images from the respective ImageNet (Deng
et al., 2009) entry, and from each image we ex-
tract a 4096-dimensional visual vector using the
Caffe toolkit (Jia et al., 2014), together with the pre-
trained convolutional neural network of Krizhevsky
et al. (2012).3 These vectors are finally averaged to
obtain a single visual representation of each object.
Concerning social cues, since infants rarely follow
the caregivers’ eye gaze but rather attend to objects
held by them (Yu and Smith, 2013), we include in
our corpus only information on whether the care-
giver is holding any of the objects present in the
scene. Note however that this signal, while infor-
mative, can also be ambiguous or even misleading
with respect to the actual referents of a statement.
Figure 1 exemplifies our version of the corpus, the
Illustrated Frank et al. Corpus (IFC).

Several aspects make IFC a challenging dataset.
Firstly, we are dealing with language produced in an
interactive setting rather than written discourse. For
example, compare the first sentence in the Wikipedia
entry for hat (“A hat is a head covering”) to the third
utterance in Figure 1, corresponding to the first oc-
currence of hat in our corpus. Secondly, there is
a large amount of referential uncertainty, with up
to 7 objects present per utterance (2 on average)
and with only 33% of utterances explicitly includ-
ing a word directly associated with a possible ref-
erent (i.e., not taking into account pronouns). For
instance, the first, second and last utterances in Fig-
ure 1 do not explicitly mention any of the objects
present in the scene. This uncertainty also extends
to social cues: only in 23% of utterances does the
mother explicitly name an object that she is holding
in her hands. Finally, models must induce word–
object associations from minimal exposure to input
rather than from large amounts of training data. In-
deed, the IFC is extremely small by any standards:
624 utterances making up 2,533 words in total, with
8/37 test words occurring only once.

3To match the hidden layer size, we average every k =
4096/200 original non-overlapping visual dimensions into a sin-
gle dimension.

Model Best-F
MSG .64 (.04)
AttentiveMSG .70 (.04)
AttentiveSocialMSG .73 (.03)
ASMSG+shuffled visual vectors .65 (.06)
ASMSG+randomized sentences .59 (.03)
BEAGLE .55
PMI .53
Bayesian CSL .54
BEAGLE+PMI .83

Table 1: Best-F results for the MSG variations and alternative

models on word-object matching. For all MSG models, we re-

port Best-F mean and standard deviation over 100 iterations.

4 Experiments

We follow the evaluation protocol of Frank et al.
(2007) and Kievit-Kylar et al. (2013). Given 37 test
words and the corresponding 17 objects (see Table
2), all found in the corpus, we rank the objects with
respect to each word. A mean Best-F score is then
derived by computing, for each word, the top F score
across the precision-recall curve, and averaging it
across the words. MSG rankings are obtained by di-
rectly ordering the visual representations of the ob-
jects by cosine similarity to the MSG word vectors.

Table 1 reports our results compared to those
in earlier studies, all of which did not use ac-
tual visual representations of objects but rather ar-
bitrary symbolic IDs. Bayesian CSL is the orig-
inal Bayesian cross-situational model of Frank et
al. (2007), also including social cues (not limited,
like us, to mother’s touch). BEAGLE is the best
semantic-space result across a range of distributional
models and word-object matching methods from
Kievit-Kylar et al. (2013). Their distributional mod-
els were trained in a batch mode, and by treating ob-
ject IDs as words so that standard word-vector-based
similarity methods could be used to rank objects
with respect to words. Plain MSG is outperforming
nearly all earlier approaches by a large margin. The
only method bettering it is the BEAGLE+PMI com-
bination of Kievit-Kylar et al. (PMI measures direct
co-occurrence of test words and object IDs). The
latter was obtained through a grid search of all pos-
sible model combinations performed directly on the
test set, and relied on a weight parameter optimized
on the corpus by assuming access to gold annotation.
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It is thus not comparable to the untuned MSG.

Plain MSG, then, performs remarkably well, even
without any mechanism attempting to track word-
object matching across scenes. Still, letting the
model pay more attention to the objects currently
most tightly associated to a word (AttentiveMSG)
brings a large improvement over plain MSG, and
a further improvement is brought about by giv-
ing more weight to objects touched by the mother
(AttentiveSocialMSG). As concrete examples, plain
MSG associated the word cow with a pig, whereas
AttentiveMSG correctly shifts attention to the cow.
In turn, AttentiveSocialMSG associates to the right
object several words that AttentiveMSG wrongly
pairs with the hand holding them, instead.

One might fear the better performance of our
models might be due to the skip-gram method be-
ing superior to the older distributional semantic ap-
proaches tested by Kievit-Kylar et al. (2013), in-
dependently of the extra visual information we ex-
ploit. In other words, it could be that MSG has sim-
ply learned to treat, say, the lamb visual vector as
an arbitrary signature, functioning as a semantically
opaque ID for the relevant object, without exploit-
ing the visual resemblance between lamb and sheep.
In this case, we should obtain similar performance
when arbitrarily shuffling the visual vectors across
object types (e.g., consistently replacing each occur-
rence of the lamb visual vector with, say, the hand
visual vector). The lower results obtained in this
control condition (ASMSG+shuffled visual vector)
confirm that our performance boost is largely due to
exploitation of genuine visual information.

Since our approach is incremental (unlike the vast
majority of traditional distributional models that op-
erate on batch mode), it can in principle exploit
the fact that the linguistic and visual flows in the
corpus are meaningfully ordered (discourse and vi-
sual environment will evolve in a coherent man-
ner: a hat appears on the scene, it’s there for a
while, in the meantime a few statements about hats
are uttered, etc.). The dramatic quality drop in the
ASMSG+randomized sentences condition, where
AttentiveSocialMSG was trained on IFC after ran-
domizing sentence order, confirms the coherent sit-
uation flow is crucial to our good performance.

word
gold 17 objects 5.1K objects

object nearest r nearest r
bunny bunny bunny 1 bunny 1
cows cow cow 1 lea 7
duck duck duck 1 mallard 4

duckie duck duck 1 mallard 3
kitty kitty book 2 bookcase 66

lambie lamb lamb 1 lamb 1
moocows cow cow 1 ranch 4

rattle rattle rattle 1 rattle 1

Table 2: Test words occurring only once in IFC, together

with corresponding gold objects, AttentiveSocialMSG top vi-

sual neighbours among the test items and in a larger 5.1K-

objects set, and ranks of gold object in the two confusion sets.

Minimal exposure. Given the small size of the in-
put corpus, good performance on the word-object
association already counts as indirect evidence that
MSG, like children, can learn from small amounts of
data. In Table 2 we take a more specific look at this
challenge by reporting AttentiveSocialMSG perfor-
mance on the task of ranking object visual represen-
tations for test words that occurred only once in IFC,
considering both the standard evaluation set and a
much larger confusion set including visual vectors
for 5.1K distinct objects (those of Lazaridou et al.
(2015)). Remarkably, in all but one case, the model
associates the test word to the right object from the
small set, and to either the right object or another
relevant visual concept (e.g., a ranch for moocows)
when the extended set is considered. The exception
is kitty, and even for this word the model ranks the
correct object as second in the smaller set, and well
above chance for the larger one. Our approach, just
like humans (Trueswell et al., 2013), can often get a
word meaning right based on a single exposure to it.

Generalization. Unlike the earlier models relying
on arbitrary IDs, our model is learning to associate
words to actual feature-based visual representations.
Thus, once the model is trained on IFC, we can
test its generalization capabilities to associate known
words with new object instances that belong to the
right category. We focus on 19 words in our test set
corresponding to objects that were normed for visual
similarity to other objects by Silberer and Lapata
(2014). Each test word was paired with 40 ImageNet
pictures evenly divided between images of the gold
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object (not used in IFC), of a highly visually simi-
lar object, of a mildly visually similar object and of
a dissimilar one (for duck: duck, chicken, finch and
garage, respectively). The pictures were represented
by vectors obtained with the same method outlined
in Section 3, and were ranked by similarity to a test
word AttentiveSocialMSG representation.

Average Precision@10 for retrieving gold object
instances is at 62% (chance: 25%). In the major-
ity of cases the top-10 intruders are instances of
the most visually related concepts (60% of intrud-
ers, vs. 33% expected by chance). For example, the
model retrieves pictures of sheep for the word lamb,
or bulls for cow. Intriguingly, this points to classic
overextension errors that are commonly reported in
child language acquisition (Rescorla, 1980).

5 Related Work

While there is work on learning from multimodal
data (Roy, 2000; Yu, 2005, a.o.) as well as work
on learning distributed representations from child-
directed speech (Baroni et al., 2007; Kievit-Kylar
and Jones, 2011, a.o.), to the best of our knowledge
ours is the first method which learns distributed rep-
resentations from multimodal child-directed data.
For example, in comparison to Yu (2005)’s model,
our approach (1) induces distributed representations
for words, based on linguistic and visual context,
and (2) operates entirely on distributed represen-
tations through similarity measures without posit-
ing a categorical level on which to learn word-
symbol/category-symbol associations. This leads to
rich multimodal conceptual representations of words
in terms of distributed multimodal features, while in
Yu’s approach words are simply distributions over
categories. It is therefore not clear how Yu’s ap-
proach could capture phenomena such as predicting
appearance from a verbal description or representing
abstract words–all tasks that our model is at least in
principle well-suited for. Note also that Frank et al.
(2007)’s Bayesian model we compare against could
be extended to include realistic visual data in a sim-
ilar vein to Yu’s, but it would then have the same
limitations.

Our work is also related to research on reference
resolution in dialogue systems, such as Kennington
and Schlangen (2015). However, unlike Kennington

and Schlangen, who explicitly train an object recog-
nizer associated with each word of interest, with at
least 65 labeled positive training examples per word,
our model does not have any comparable form of
supervision and our data exhibits much lower fre-
quencies of object and word (co-)occurrence. More-
over, reference resolution is only an aspect of what
we do: Besides being able to associate a word with a
visual extension, our model is simultaneously learn-
ing word representations that allow us to deal with a
variety of other tasks—for example, as mentioned
above, guessing the appearance of the object de-
noted by a new word from a purely verbal descrip-
tion, grouping concepts into categories by their sim-
ilarity, or having both abstract and concrete words
represented in the same space.

6 Conclusion

Our very encouraging results suggest that multi-
modal distributed models are well-suited to simu-
lating human word learning. We think the most
pressing issue to move ahead in this direction is to
construct larger corpora recording the linguistic and
visual environment in which children acquire lan-
guage, in line with the efforts of the Human Spee-
chome Project (Roy, 2009; Roy et al., 2015). Having
access to such data will enable us to design agents
that acquire semantic knowledge by leveraging all
available cues present in multimodal communicative
setups, such as learning agents that can automati-
cally predict eye-gaze (Recasens∗ et al., 2015) and
incorporate this knowledge into the semantic learn-
ing process.
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