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Abstract

In this paper, we present our multilin-
gual dependency parser developed for the
CoNLL 2017 UD Shared Task dealing with
“Multilingual Parsing from Raw Text to
Universal Dependencies”1. Our parser ex-
tends the monolingual BIST-parser as a
multi-source multilingual trainable parser.
Thanks to multilingual word embeddings
and one hot encodings for languages,
our system can use both monolingual
and multi-source training. We trained
69 monolingual language models and 13
multilingual models for the shared task.
Our multilingual approach making use
of different resources yield better results
than the monolingual approach for 11
languages. Our system ranked 5th and
achieved 70.93 overall LAS score over the
81 test corpora (macro-averaged LAS F1
score).

1 Introduction

Many existing parsers are trainable on monolin-
gual data. Normally such systems take a monolin-
gual corpus in input, along with monolingual word
embeddings and possibly monolingual dictionar-
ies as well as other knowledge sources. However
for resource-poor languages such as Kurmanji and
Buryat2, there are generally not enough resources
to train an efficient parser. One reasonable ap-
proach is then to infer knowledge from similar lan-
guages (Tiedemann, 2015). Developing tools to
process several languages including resource-poor
languages has been conducted in many different
ways in the past (Heid and Raab, 1989). Thanks

1http://universaldependencies.org/conll17/
2http://universaldependencies.org/conll17/surprise.html

to Universal Dependency (Nivre et al., 2016), it
is now possible to train a system for several lan-
guages from the same set of POS tags. It has
also been demonstrated that, with current machine
learning approaches, parsing accuracy improves
when using multilingual word embeddings (i.e.
word embeddings inferred from corpora in differ-
ent languages) even for resource-rich languages
(Ammar et al., 2016a; Guo et al., 2015).

In this paper, we describe the development of
a system using either a monolingual or multilin-
gual strategy (depending on the kind of resources
available for each language considered) for the
CoNLL 2017 shared task (Zeman et al., 2017).
For the multilingual model, we assume that learn-
ing over words and POS sequences is a first step
from which better parsers can then be derived. For
this reason, we re-used most of the training al-
gorithms implemented for the BIST-parser since
these have proven to be effective when dealing
with sequential information even for long sen-
tences, thanks to bidirectional LSTM feature rep-
resentations (Kiperwasser and Goldberg, 2016).

In addition, our parser can also have recourse to
multilingual word embeddings that merge differ-
ent word vectors in a single vector space in order
to get multi-source models. As for multilingual
word embeddings, we extend the bilingual word
mapping approach (Artetxe et al., 2016) to be able
to deal with multilingual data. We have only used
this approach based on multilingual word embed-
dings for two different language groups in this
experiment: (i) for resource-poor languages for
which less than 30 sentences were provided for
training such as surprise languages and Kazakh,
and (ii) for another group of 7 resource-rich lan-
guages that are all Indo-European languages. This
is to show that even the analysis of resource-rich
languages can be improved thanks to a multilin-
gual approach.
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Figure 1: Overall system structure for training language models. (1) Embedding Layer: vectorized
features that are feeding into Bidirectional LSTM. (2) Bidirectional-LSTM: train representation of each
token as vector values based on bidirectional LSTM neural network. (3) Multi-Layer Perceptron:
build candidate of parse trees based on trained(changed) features by bidirectional LSTM layer, and then
calculate probabilistic scores for each of candidates. Finally, if it has multiple roots, revise it (section 3)
or select the best parse tree.

Although we could theoretically train a single
model for all the languages considered in the eval-
uation based on our multilingual approach, rele-
vant results can only be obtained if one takes into
account language similarities and typological in-
formation. Moreover, given the limited time and
the specific resource environment designed for the
shared task, it was hard to get better results using
a multilingual approach than using a monolingual
approach for resource-rich languages since train-
ing new word embeddings requires time. Thus,
we processed 69 corpora with monolingual mod-
els, and only 13 corpora with our multilingual ap-
proach.

In what follows we describe the architecture
of our system (section 2), our monolingual (sec-
tion 3) as well as our multilingual approach (sec-
tion 4). Finally, we compare the results with the
baseline provided by UDPipe1.1 and with the re-
sults of other teams (section 5).

2 System Overview

Our system extends the Graph-based parser
(Taskar et al., 2005) especially in BIST-parser that
works by default with monolingual data. Basi-
cally the Graph-based BIST-parser uses bidirec-
tional Long Short Term Memory (LSTM) feature
representations thanks to two neural network lay-
ers (Kiperwasser and Goldberg, 2016). In or-
der to select the best relation and head for each
tokens in a sentence, Kiperwasser and Goldberg

link the output of the bidirectional LSTM with the
Multi-Layer Perceptron (MLP) thanks to one neu-
ral layer. Here we adopt the same feature repre-
sentation and MLP but different training features
and decision models.

In order to adapt the parser to a multilingual
approach, we add new parameters and new fea-
tures to the training algorithm, notably the pos-
sibility to use multilingual word embeddings and
one hot encoding to encode languages. Finally, the
parser can be trained on monolingual and multilin-
gual data depending on the parameters chosen for
training. An overview of the overall architecture
is given in Figure 1. Details on word embeddings
along with the number of dimensions considered
are given below.

• Word: randomly generated word embedding
(100)

• XPOS: language-specific POS (25)

• UPOS: universal POS (25)

• External embedding1: pretrained word em-
bedding (100)

• External embedding2: pretrained word em-
bedding that is replaced with Word (100)

• one-hot encoding: one-hot encoding of the
language ID (65)
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Corpus Embedding model Bilingual Dic Training corpora
Buryat Buryat-Russian wiki dump brx(20), ru
Kurmanji Kurmanji-English wiki dump kmr(20), en
North Sámi North Sámi-Finnish wiki dump sme(20), fi, fi-fbt
Upper Sorbian Upper Sorbian-Polish OPUS hsb(20), pl
Kazakh Kazakh-Turkish OPUS kk(20), tr
Portuguese 7 languages* Europarl7,WMT11 en, it, fr, es, pt, de, sv
Italian 7 languages* Europarl7,WMT11 en, it, fr, es, pt, de, sv
Italian ParTUT 7 languages* Europarl7,WMT11 en, en partut, fr partut, it, it partut
English ParTUT 7 languages* Europarl7,WMT11 en, en partut, fr partut, it partut
French ParTUT 7 languages* Europarl7,WMT11 en partut, fr(2), fr partut, it partut
Czech-CLTT Czech - cs, cs cac, cs cltt
Galician-TreeGal Galician - ga, ga treegal
Slovenian-SST Slovenian - sl, sl sst

Table 1: Languages trained by a multilingual model. Embedding model: applied languages that
were used for making multilingual word embeddings. Bilingual Dic: resources to generate bilingual
dictionaries Training corpora: Training corpora that were used. 7 languages: English, Italian, French,
Spanish, Portuguese, German, Swedish. (number): the number of multiplication to expand the total
amount of corpus.

Word refers to words taken from the training
corpora and used as lexical features with vector-
ized embeddings in our parser. Both XPOS and
UPOS3 are used as delexicalized features. The
content of Word and POS is set randomly when
the training phase starts. In addition, two external
word embeddings are added to the representations
of words, one is concatenated with the Word vec-
tor additionally, and the other is used to replace
the Word vector. For example, let Word be gen-
erated randomly with 100 dimensional vector val-
ues and External1 and let External2 be pretrained
word embeddings made from different resources
with 100 dimensional vector values. If we just add
External1 to an additional word embedding, then
final word embedding could be Word+External1
(200 dimensions) based on concatenation. How-
ever, if we add just External2 as an additional
word embedding, Word is deleted because it is re-
placed with External2 so that final word embed-
ding could be External2 (100 dimensions). If both
are used, final word embedding could be Exter-
nal1 + External2 (Word is deleted because of Ex-
ternal2). Since we have found if we can use two
external word embeddings, replacing one word
embedding as the Word made better results than
concatenating two word embeddings based on ex-
periments.

Since our goal is to develop a multilingual pars-
3http://universaldependencies.org/format.html

ing model, we took the idea of one-hot encodings
from (Ammar et al., 2016a). The idea is to add
language one-hot encoding as an additional fea-
ture while training multilingual models. It allows
the model to directly focus on language specifici-
ties. There are 65 hot-encoding dimensions be-
cause there are 64 languages in UD 2.0 (Nivre
et al., 2017) plus unknown languages.

3 Monolingual Model

There were 81 different corpora to be parsed
within the CoNLL 2017 shared task. We used
a monolingual approach for 69 corpora, and our
results are detailed in section 5. As mentioned
above, training a monolingual model in our system
is very similar to training a BIST-parser model.
However, we made two modifications to the origi-
nal approach.

Multiple roots: The BIST-parser can generate
multiple roots for a given sentence. This is not
a problem in general but for the shared task we
need to provide only one single root per sentence.
Not detecting the right root for a sentence leads
to major errors so the problem had to be addressed
carefully. We chose to develop a simple algorithm:
when the parser returns multiple roots, our sys-
tem revises the overall sentence analysis so as to
select one single primary root and change other
previous roots as links pointing to the new head
node. Choosing the primary root is the result of an
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empirical process depending on the language con-
sidered (i.e. taking into account language-specific
word order). For example, the primary root is the
first head node in the case of an English sentence
and the last one in the case of a Korean sentence.
This very simple trick improved the LAS scores by
0.43 overall F1-measure on the development set.

Customizing for UD: Basically, the BIST-
parser is not adapted to the Universal Dependency
format. Thus several changes had to be made.
First, we added both XPOS and UPOS categories
to the parser. Second, if a word in a training sen-
tence did not exist in external word embeddings,
we replaced the word as a lemma of the word.
Third, we used the external word embeddings pro-
vided by the shared task organizers4 and concate-
nated them with the original Word embedding.

4 Multilingual Model

We processed 13 test corpora with our multilin-
gual model. The F1-measure of our system for
these corpora are better than with our monolingual
system for resource-poor languages and even for
most of the resource-rich languages.

4.1 Surprise Languages and Kazakh

There were four surprise languages provided for
evaluation within the CONLL 2017 shared task:
Buryat, Kurmanji, North Sámi and Upper Sorbian
(all in the Universal Dependency format). Less
than 30 sentences were provided for training, and
Kazakh also had 30 sentences for training. We di-
vided the training corpus in half: half od the data
were set apart for development and never used for
training.

Word embeddings. The first step for training
multilingual model is finding topologically simi-
lar languages. Thus, we selected three languages
for each surprise language in order to be able to
derive multilingual word embeddings. The choice
of languages was based on the Word Atlas of Lan-
guage Structures5 and on advices from linguists.

Bilingual Dictionary. There has been many
attempts to build multilingual embeddings (Am-
mar et al., 2016b; Smith et al., 2017). One sim-
ple but powerful method is finding a linear trans-
formation matrix from two monolingual embed-

4https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-
1989

5The Word Atlas of Language Structures provides infor-
mation about different languages in the world (family, lati-
tude and longitude, see http://wals.info).

dings. (Artetxe et al., 2016) propose to do this with
pretrained word embeddings and bilingual dictio-
naries. We tried to follow their approach using
monolingual embeddings provided by Facebook
research6 and building bilingual dictionaries. Un-
fortunately there were not many resources (even
with a limited coverage) for building a bilingual
dictionary in the case of surprise languages.

For some languages we were able to find bilin-
gual dictionaries from OPUS7. When no cor-
pus was available, we used Swadesh lists from
Wikipedia dumps. Swadesh lists are composed
of 207 bilingual words that are supposed to be
”basic concepts for the purposes of historical-
comparative linguistics”8. Finally, we trans-
formed both embeddings in a single vector space.

Table1 shows details about the selected pairs of
languages and the different sources used for our
dictionaries. From these resources, we trained a
multilingual model and after testing with the de-
velopment set set apart for each pair of candidate
languages, we picked up the best candidate for the
different surprise languages and for Kazakh.

4.2 Italian and Portuguese
There have been several attempts aiming at train-
ing multilingual models for resource-rich lan-
guages (Guo et al., 2016; Ammar et al., 2016a).
We have tested our multilingual system in a sim-
ilar way as explained in the previous section for
resource-rich languages, except that we of course
changed the resources used. We used the mul-
tilingual word embeddings for 7 languages pre-
sented in Ammar et al.’s paper (average and brown
cluster model), and then trained a multilingual
model with the training set provided for the 7 lan-
guages considered. Although the size of word
vectors for multilingual embeddings is almost 10
times smaller than with the monolingual embed-
dings made by Facebook research, the result (F1-
measure) is slightly better than with the monolin-
gual model for Italian and Portuguese, with 0.39
and 0.41 within development sets.

4.3 ParTUT corpora
We assumed that all ParTUT corpora are related
with each other. Thus, we used a similar mul-
tilingual approach to parse the ParTUT corpora
but we used different compositions of corpora for

6https://github.com/facebookresearch/fastText/
7http://opus.lingfil.uu.se/
8https://en.wikipedia.org/wiki/Swadesh list

66



Corpus LAS UAS Rank(LAS) Rank(UAS) Baseline(LAS)
Overall (81) 70.93 76.75 5 5 68.35
Big treebanks only (55) 75.79 80.55 5 5 73.04
PUD treebanks only (14) 70.77 77.64 4 4 68.33
Small treebanks only (8) 54.78 64.99 4 5 51.80
Surprise language only (4) 36.93 48.66 12 15 37.07
English PUD 82.38 85.77 2 2 78.95
Russian PUD 72.03 79.31 2 2 68.31
Spanish 85.22 88.40 2 3 81.47

Table 2: Official experiment results with rank. (number): number of corpora

Corpus LATTICE Baseline
Arabic PUD 47.13 43.14
Arabic 68.54 65.3
Bulgarian 85.6 83.64
Catalan 86.83 85.39
Czech-CAC 84.77 82.46
Czech PUD 80.86 79.8
Czech 83.68 82.87
Old Church Slavonic 60.81 62.76
Danish 76.47 73.38
Danish PUD 71.45 66.53
German 75.09 69.11
Greek 81.13 79.26
English-LinES 76.17 72.94
English PUD 82.38 78.95
English 78.91 75.84
Spanish-AnCora 86.87 83.78
Spanish PUD 79.87 77.65
Spanish 85.22 81.47
Estonian 62.93 58.79
Basque 72.13 69.15
Persian 82.63 79.24
Finnish-FTB 79.44 74.03
Finnish PUD 80.82 78.65
Finnish 77.11 73.75
French PUD 76.55 73.63
French-Sequoia 83.7 79.98
French 82.83 80.75
Irish 64.39 61.52
Galician 80.68 77.31
Gothic 60.55 59.81
Ancient Greek-PROIEL 60.58 65.22
Ancient Greek 51.5 56.04
Hebrew 61.24 57.23
Hindi PUD 50.94 50.85
Hindi 86.99 86.77

Corpus LATTICE Baseline
Croatian 80.96 77.18
Hungarian 68.49 64.3
Indonesian 76.6 74.61
Italian PUD 86.49 83.7
Japanese PUD 77.41 76.28
Japanese 73.98 72.21
Korean 72.35 59.09
Latin-ITTB 74.33 76.98
Latin-PROIEL 55.04 57.54
Latin 51.95 43.77
Latvian 64.49 59.95
Dutch-LassySmall 75.67 78.15
Dutch 70.6 68.9
Norwegian-Bokmaal 85.55 83.27
Norwegian-Nynorsk 84.57 81.56
Polish 85.94 78.78
Portuguese-BR 88.56 85.36
Portuguese PUD 76.56 73.96
Romanian 81.93 79.88
Russian PUD 72.03 68.31
Russian-SynTagRus 87.9 86.76
Russian 78.42 74.03
Slovak 79.23 72.75
Slovenian 84.52 81.15
Swedish-LinES 78.15 74.29
Swedish PUD 73.4 70.62
Swedish 81.07 76.73
Turkish PUD 34.82 34.53
Turkish 58.89 53.19
Uyghur 34.94 34.18
Ukrainian 63.63 60.76
Urdu 79.26 76.69
Vietnamese 39.87 37.47
Chinese 61.94 57.4
Average 73.13 70.45

Table 3: Official experiment results processed by monolingual models.
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Corpus LATTICE-Multi LATTICE-Mono Baseline
Buryat 27.08 19.7 31.5
Kurmanji 41.71 37.59 32.35
North Sámi 28.39 25.89 30.6
Upper Sorbian 50.54 41.23 53.83
Kazakh 22.11 19.98 24.51
Italian 87.75 87.98 85.28
Portuguese 84.08 84.08 82.11
English-ParTUT 80.45 77.62 73.64
French-ParTUT 83.26 80.66 77.38
Italian-ParTUT 84.09 80.36 -
Czech-CLTT 75.45 74.85 71.64
Galician-TreeGal 68.01 67.75 65.82
Slovenian-SST 49.94 48.06 46.45

Table 4: Official experiment results processed by multilingual models.

training, such as French ParTUT with en partut,
fr partut, it partut and doubled-fr corpus. Finally,
the best training compositions are listed in Table1.

4.4 Czech-CLTT, Galician-TreeGal,
Slovenian-SST

These three corpora have a small number of train-
ing sentences. We thus chose to train them to-
gether but with different language hot-encoding
values.

5 Experimental Results

Because we wanted to focus on the dependency
parsing task, we used automatically annotated cor-
pora for testing and also trained all models with
the annotated corpora provided by UDPipe (Straka
et al., 2016).

As described in section 4, we used different
word embeddings and training corpora for multi-
lingual models. As for monolingual models, we
simply trained the system with monolingual em-
beddings (see details in section 3).

Overall results. Table 2, 3 and 4 show the of-
ficial results (except for it ParTUT), using the F1-
measure computed by the TIRA platform (Potthast
et al., 2014) for the CoNLL 2017 Shared task9.
Our system achieved 70.93 F1 (LAS) on the over-
all 81 test sets and ranked 5th out of 33 teams. The
average gap between the baseline obtained with
UDPipe1.1 (Straka et al., 2016) and our system
is 2.58 LAS in our favor. Our system shows bet-
ter results in avoiding over-fitting issues. Perfor-
mance gaps are narrowed when considering only

9http://universaldependencies.org/conll17/results.html

PUD test sets (for example, our system ranked
second best for processing English PUD and Rus-
sian PUD), which is encouraging for practical ap-
plications.

Multilingual model. Table 4 shows the re-
sults obtained when using the multilingual mod-
els on the small treebank dataset (fr partut, ga,
gl treegal, kk, la, sl sst, ug, uk). We ranked 4th,
with 54.78 LAS score on this group of languages.
However, in terms of extremely resource-poor lan-
guages (surprise languages), we have ranked only
12th, with 36.93 LAS score. This is slightly lower
than the UDPipe1.1 baseline model: we assume
this is the result of using half of the corpus for
training surprise languages (section 4). If we com-
pare monolingual models of surprise languages
with multilingual ones, we see an improvement
between 2.5 and 9.31 percent. The same kind
of improvement can be observed for the ParTUT
group. In this case, the multilingual approach im-
proves performance by almost 3 points.

6 Conclusion

In this paper, we have described our system for
multilingual dependency parsing that has been
tested over the 81 Universal Dependency cor-
pora provided for the CoNLL 2017 shared task.
Our parser mainly extends the monolingual BIST-
parser as a multi-source trainable parser. We pro-
posed three main contributions: (1) the integration
of multilingual word embeddings and one hot en-
codings for the different languages, which means
our system can work using monolingual models
as well as on multilingual ones. (2) a simple but
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effective way to solve the multiple roots problem
of the original BIST parser and (3) an original ap-
proach for the elaboration of multilingual dictio-
naries for resource-poor languages and the projec-
tion of monolingual word embeddings in a single
vector space. Our system ranked 5th and achieved
70.93 overall F1-measure over the 81 test corpora
provided for evaluation. We are confident there is
room for improvement since this system is only
preliminary and lots of components could be op-
timized. A better account of language typology
could also help the process and show the benefit of
linguistic knowledge in this kind of environment.
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