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Abstract

This paper investigates the problem of an-
swering compositional factoid questions
over knowledge bases (KB) under effi-
ciency constraints. The method, called
TIPI, (i) decomposes compositional ques-
tions, (ii) predicts answer types for indi-
vidual sub-questions, (iii) reasons over the
compatibility of joint types, and finally,
(iv) formulates compositional SPARQL
queries respecting type constraints. TIPI’s
answer type predictor is trained using
distant supervision, and exploits lexical,
syntactic and embedding-based features
to compute context- and hierarchy-aware
candidate answer types for an input ques-
tion. Experiments on a recent benchmark
show that TIPI results in state-of-the-art
performance under the real-world assump-
tion that only a single SPARQL query can
be executed over the KB, and substantial
reduction in the number of queries in the
more general case.

1 Introduction

Motivation. Question answering over knowledge
bases (KB-QA) has gained attention, facilitated by
the rise of large-scale knowledge bases such as
Freebase (Bollacker et al., 2007), DBPedia (Auer
et al., 2007) and YAGO (Suchanek et al., 2007).
The key challenge for KB-QA is to align mentions
and relational phrases in a natural language ques-
tion to semantic items in the KB (entities and pred-
icates), and to construct a valid SPARQL query
that is then executed over the KB to retrieve crisp
answers (Abujabal et al., 2017; Bast and Hauss-
mann, 2015; Yahya et al., 2013; Yih et al., 2015).

Questions going beyond simple factoid ques-
tions (like “Who won a Nobel Prize in Physics?”)

that are prevalent in popular KB-QA benchmarks
are generally out of scope for most state-of-the-
art KB-QA systems (Yih et al., 2015; Dong et al.,
2015; Berant and Liang, 2015). However, ques-
tions like “Who won a Nobel Prize in Physics and
was born in Bavaria?”, can be decomposed into a
set of simpler questions “Who won a Nobel Prize
in Physics?” and “Who was born in Bavaria?”.
We refer to such questions as compositional ques-
tions, and these are the focus of this work.

Limitations of state-of-the-art. A few past ap-
proaches that can handle such compositional ques-
tions (Bao et al., 2016; Xu et al., 2016; Abuja-
bal et al., 2017) generate and execute candidate
SPARQL queries for each sub-question separately
and/or use the intersection as the final answer
(Werner Heisenberg, among others). This cre-
ates the challenge of deciding which queries from
the different sub-questions fit together. Past ef-
forts use information about answers to all gener-
ated SPARQL queries, and retrospectively choose
a query pair from among these whose answer in-
tersection is non-empty. However, this mode of
operation is highly inefficient, since it necessitates
execution of all generated queries, followed by a
ranking or aggregation phase. We aim to address
this concern, leveraging the compatibility of ex-
pected answer types. Such compatibility, as we
show, has the potential to prune the search space
of candidate SPARQL queries.

Approach. Given a complex question, our pro-
posed method TIPI first decomposes it into simple
sub-questions. Next, it predicts a ranked list of
fine-grained answer types for each sub-question,
respecting a type hierarchy. TIPI then seeks can-
didate SPARQL queries corresponding to these
sub-questions as input from an underlying KB-
QA model, and finds pairs of compatible queries
from among these using hierarchy-based reason-
ing. Finally, it scores these pairs and finds the best
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Who won a Nobel Prize in Physics and was born in Bavaria?
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Figure 1: A toy example showing how TIPI works.
Top: Decompose question. Middle: Determine
compatible types among answer types of the two
sub-questions. Bottom: Stitch compatible queries
together and prune queries by answer type. This is
followed by scoring and ranking of the query pairs
to formulate the best compositional query.

pair to formulate a compositional query, to be ex-
ecuted over the KB. The final two steps contribute
towards TIPI’s efficiency-aware perspective.

Contributions. The paper makes the following
three contributions:

• We are the first to exploit answer types for han-
dling compositional questions in KB-QA;

• Experiments show state-of-the-art perfor-
mance under practical efficiency constraints;

• Finally, TIPI contains a hierarchy- and
context-aware fine-grained answer typing
module that can be used as a plug-in by any
KB-QA system.

2 Answering Compositional Questions

We now explain the steps by which TIPI handles
the answering of a compositional question, taking
the running example of “Who won a Nobel Prize
in Physics and was born in Bavaria?”. A simpli-
fied workflow is shown in Figure 1.

Question decomposition. Given a composi-
tional question, TIPI first decomposes it into sim-
ple sub-questions “Who won a Nobel Prize in
Physics?” and “Who was born in Bavaria?”, us-
ing dependency parse patterns (Xu et al., 2016;
Bao et al., 2014). These patterns can handle sev-
eral kinds of compositional questions with mul-
tiple entities or relations (e.g., questions with
relative clauses and coordinating conjunctions).
Question decomposition has also been applied to
the IBM Watson system (Boguraev et al., 2014),

where the authors separated cases as being either
parallel or nested. This work deals with parallel
decomposition, and handling nesting like “which
daughter of john f. kennedy studied at radcliffe
college?” is future work.

Answer Type prediction. Next, we predict a
set of expected answer types for each sub-question
using an answer type predictor, described in the
next section. The typing module is a context-
aware hierarchical classifier that takes a question
as input and produces a set of answer types along
with confidence scores as output (like Person:
0.8, Actor: 0.3, Scientist: 0.6; scores need
not add up to one).

Type compatibility scoring. We define two
types to be compatible whenever they are the
same, or one is an ancestor of the other, according
to some type system. For example, Scientist
and Person are compatible, as the former is a
descendant of the latter. Now, let T1 and T2 be
a pair of predicted types for the first and second
sub-questions, respectively. We score each such
pair with a linear combination of granularity and
confidence as follows:

score(T1, T2) = γ ·max(level(T1), level(T2))

+ (1 − γ) · avg(conf(T1), conf(T2))

if T1 and T2 are compatible, else zero. Here,
level(Ti) and conf(Ti) refer to the level of Ti in
the type system, and the classifier prediction con-
fidence for Ti, respectively. We take the root to
be at level zero, with finer types having higher
levels. Thus, pairs with fine-grained types (like
Physicist), and with high prediction confi-
dences, accumulate higher scores. Mixing param-
eter γ is chosen to be 0.5. We take the highest
scoring type pair, and then take the finer of the
two types as the final prediction (Physicist
in this example). The intuition here is that one
sub-question might reveal more typing informa-
tion (“Who won a Nobel Prize in Physics?” gives
Physicist) than the other (“Who was born in
Bavaria?” only gives Person).

Compositional query formulation. We now
let a KB-QA system generate a ranked list of
SPARQL queries for each sub-question. In past
work, all query pairs (one from each sub-question)
are combined to create numerous compositional
queries. Our goal is to stitch only type-compatible
queries, which is achieved as follows. Each
query predicate has a type signature from the
KB, which states the expected types for the pred-
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[.*]* [which|what] [lemma: be]? [det]? [adj|adv]* [noun]+ [.*]*
(E.g.: What is the current currency in Germany?)

[.*]* [which|what] [lemma: be]? [det]? [adj|adv]* [noun] [of ] [det]?
[adj|adv]* [noun]+ [.*]* (E.g.: What kind of currency does Germany have?)

[.*]* [which|what] [lemma: be] [det]? [noun]+ [poss] [adj|adv]*
[noun]+ [.*]* (E.g.: What is Germany’s currency?)

Table 1: Patterns to extract lexical answer types
(underlined). Symbols are borrowed from stan-
dard regular expression conventions.

icate. We use our final predicted type to re-
move all queries from either sub-question whose
type signatures are not compatible to it. Thus,
queries like PhysicsNobelPrize wonBy x? and
Bavaria peopleBornHere x?, with compatible
type signatures Physicist and Person are
retained, while Bavaria containedBy x? and
PhysicsNobelPrize awardingOrg x? with sig-
natures Country and Organization are re-
moved. All surviving query pairs are combined,
and are then scored by the sum of the inverses
of the ranks they had from the underlying KB-
QA model. The pair that maximizes this rank
inversion score is finally chosen for execution
by the system: PhysicsNobelPrize wonBy x? .
Bavaria peopleBornHere x? for our example.

3 Predicting Answer Types

Our strategy for answer type prediction is to har-
ness explicit clues available in the question, and
to resort to more implicit ones only when such
signals are not present. We thus use a two-
stage approach, inspired by work on named en-
tity typing (Del Corro et al., 2015; Yosef et al.,
2012)1: (1) candidate collection, using lexico-
syntactic patterns to identify lexical types which
can be mapped to a set of semantic types using lex-
icons; (2) type selection, using a hierarchical clas-
sifier to disambiguate among the candidates. Note
that in absence of explicit clues for candidates in
the question, our method proceeds directly to the
second stage.

Candidate Collection. To extract the lexical
answer type from a question, we use simple POS
patterns (examples in Table 1), utilizing Stanford
CoreNLP for tokenization and POS-tagging (Man-
ning et al., 2014). In a second step, the lexi-
cal type extracted from the question is mapped

1While the task in named entity typing is somewhat simi-
lar to answer typing, the crucial difference is that in the latter
the entity (answer) itself is missing.

to a set of semantic types (KB-types) using lexi-
cons (Berant et al., 2013). Such lexicons can be
constructed by mining entity-annotated relational
phrases in CLUEWEB09 (Lin et al., 2012). For
example, the lexical type ‘physicist’ may map to
the semantic types Scientist, Theoretical
physicist and Quantum physicist.

Type Selection. From the candidate collection
phase, we receive a set of candidate types, for each
of which we run a binary classifier to get a confi-
dence score. If no lexical answer type could be
found in the question (like “Where did Einstein
study?”) or there were no lexicon entries, the clas-
sifier makes predictions on all types from our type
system. The hierarchical classifier works as fol-
lows: starting at the root of the type system we
predict probabilities for its children that are candi-
dates, using per-type binary classifiers. Iteratively,
this process is repeated for sub-trees whose root
has a confidence score above a global threshold α.

Training. We start with a dataset where each
question is labeled with a set of expected answer
types. We use the siblings strategy (Silla and Fre-
itas, 2011) to train a classifier for each type: we
use all questions labeled with T as positive in-
stances for a type T ; we use only those questions
as negative instances that are labeled with some
sibling of T according to the type system. We
use four sets of features: (i) Surface features: n-
grams of length up to three from the question; (ii)
Dependency parse features: n-grams constructed
by hops over relations in the dependency tree to
capture long-range dependencies; (iii) Word2vec
features: Per question, we add ten words most
similar to the question words (except for stop-
words and entities) using a pre-trained model of
word2vec (Mikolov et al., 2013); and (iv) Ques-
tion length: The number of tokens in the question.
To reduce data sparsity, we replace all question en-
tities by a wildcard for pattern generalization, be-
fore computing the features.

4 Experiments

4.1 Setup

Dataset. We use the very recent dataset of
150 compositional questions2 created by Abujabal
et al. (2017) which were sampled from the 2013

2Available for download at http://people.
mpi-inf.mpg.de/˜abujabal/publications/
quint/complex-questions-wikiasnwers-150.
json, Accessed 22 September 2017.
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WikiAnswers resource (Fader et al., 2013). Every
question in this dataset was constrained to have
more than one named entity or relational phrase
(e.g., “Who directed Braveheart and Paparazzi?”
and “Who directed Braveheart and played in Mad
Max?”). We use Freebase as the underlying KB.

Baselines. We use the following baselines:
the open-source AQQU system (Bast and Hauss-
mann, 2015) (best performing public KB-QA sys-
tem on the popular WebQuestions benchmark (Be-
rant et al., 2013)), and reimplemented versions
of the answer stitching mechanism (ANSSTITCH)
in Abujabal et al. (2017), and the query stitching
mechanism (QUERYSTITCH) in Bao et al. (2016).
As mentioned in Section 2, TIPI acts as a plug-
in for KB-QA systems, and hence needs an un-
derlying model to generate queries. To this end,
we build and evaluate AQQU+TIPI and QUERYS-
TITCH+TIPI. If question decomposition fails, or
if TIPI prunes away all queries with a non-empty
answer set, we back off to the original model.
Abujabal et al. (2017) use an alternative approach
of stitching answers for sub-questions instead of
queries, and hence it is not meaningful to have a
comparable ANSSTITCH+TIPI system.

Training the type predictor. We use the 1000
most frequent types from Freebase as our type sys-
tem. Since there is no dataset directly containing
questions and answer types, we resort to distant
supervision as follows: for each gold answer to
a question in WebQuestions (WQ) (Berant et al.,
2013) and SimpleQuestions (SQ) (Bordes et al.,
2015), we look up its notable types from Freebase.
This is often a large set, agnostic to the context
of the specific question at hand: e.g. Germany,
the answer to “What is Albert Einstein’s nation-
ality?”, has 53 notable types, including context-
irrelevant ones like Filming Location and
Treaty Signatory. We prune this set in two
ways: (1) keep only those types that are in our type
system, and (2) retrieve expected types of Freebase
predicates corresponding to relations in the ques-
tion (e.g. hasNationality has the expected
object type Country) and only retain types com-
patible to these. This is possible via gold SPARQL
queries available in WQ and SQ. We then train the
hierarchical classifier on a total of 10k questions
(3k from WQ, 6.4k from SQ, and 0.6k Freebase
type descriptions). Threshold α was tuned to 0.6
on a development set of 2k questions (0.8k from
WQ and 1.2k from SQ) by optimizing on F1.

Feature Sets Prec (Auto) Prec (Human)
Surface 71.9 65.6
Surface + DP 72.2 65.9
Surface + DP + w2v 73.2 67.1
Surface + DP + w2v + QLen 73.9 67.3

Table 2: Intrinsic evaluation of type prediction,
showing effects of feature ablation.

4.2 Results

Intrinsic evaluation of type predictor. We eval-
uate our type predictor intrinsically in two ways:
(i) automatic evaluation, treating the labels gen-
erated by distant supervision as gold labels, and
(ii) human evaluation. Three human annotators
marked, for each prediction, whether it is cor-
rect and context-aware: e.g. for “Who devel-
oped the theory of relativity?”, they would mark
Scientist and Person as correct but not
NobelPrizeWinner or Teacher. Note that
in the automatic evaluation, the context-oblivious
types might be deemed as correct. Table 2 shows
the results of automatic evaluation in the left col-
umn and human evaluation in the right column.
The predictions are of high precision, even under
human evaluation which only considers context-
aware predictions as correct. Mean Cohen’s
κ (Cohen, 1960) is 0.743, showing good inter-
annotator agreement. Feature ablation shows that
each of the four feature sets is useful.

Answering performance. Since each question
potentially has a set of correct answers, we com-
pute precision, recall and F-score for each ques-
tion, and then average it over all 150 questions.
We evaluate two setups: (i) when only the top-
ranking compositional query is executed, and (ii)
when the rank-based query scoring component is
disabled and all surviving compositional queries
(combinations of type-compatible queries) are ex-
ecuted. Results are presented in Table 3, where we
make the following key observations:

TIPI results in state-of-the-art performance.
In the case of best query execution, we find
that TIPI’s preferential scoring system for fine-
grained types proves highly effective: QUERYS-
TITCH+TIPI achieves the highest F1 on the dataset
(0.367). It also has the best overall recall (0.469),
and is in the top-2 for precision. Thus, TIPI
helps attain the best performance under the practi-
cal constraint of executing only a single query and
eliminating the overhead of answer aggregation.

TIPI improves efficiency while maintaining
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Approach Only best query executed over KB All queries executed over KB

Metric Precision Recall F1-Score #Queries Precision Recall F1-Score
ANSSTITCH (Abujabal et al., 2017) 0.345 0.409 0.344 97.4 0.495 0.556 0.485

AQQU (Bast and Haussmann, 2015) 0.245 0.466 0.253 54.5 0.245 0.466 0.253
AQQU+TIPI 0.209 0.515 0.231 35.7 0.209 0.515 0.231

QUERYSTITCH (Bao et al., 2016) 0.358 0.428 0.360 57.5 0.459 0.544 0.456
QUERYSTITCH+TIPI 0.356 0.469 0.367 36.0 0.439 0.566 0.445

Table 3: Answering performance on 150 compositional questions from Abujabal et al. (2017). The two
best (minimum for #Queries, maximum for all other columns) values in every column are marked in bold.

comparable performance. In the unconstrained
scenario, by reasoning over type compatibility,
TIPI substantially reduces the number of queries
that the KB-QA system executes (35.7 from 54.5
(AQQU), and 36.0 from 57.5 (QUERYSTITCH)).
This is achieved while maintaining comparable F1
performance. Moreover, note that the best per-
forming method with TIPI (QUERYSTITCH+TIPI)
improves efficiency by a factor of 2.71 on the over-
all best performing ANSSTITCH (97.4 queries to
36.0). The generally lower values corresponding
to the AQQU rows is because AQQU was originally
designed for single-relation KB-QA.

Analysis. Question decomposition failures are
the primary cause of error. TIPI’s success hinges
on the triggering of question decomposition rules
adapted from Xu et al. (2016); it is worthwhile
to note that results were even more encouraging
when the 43 questions for which the rules did
not fire were excluded from the analysis. Re-
sults averaged over the remaining 107 questions
show that QUERYSTITCH+TIPI performs the best
on all three metrics (F1 = 0.372, Prec = 0.365,
Rec = 0.402) under best-query execution. In
the all-queries case, QUERYSTITCH+TIPI reduces
the number of queries by an even greater factor
of 3.13 (w.r.t. ANSSTITCH) with only a 0.02
drop in F1. This error analysis suggests that bet-
ter question decomposition, going beyond simple
syntactic rules, will improve overall performance.
Finally, representative questions that could only
be answered when TIPI was used as plug-in, are
shown in Table 4.

5 Related Work

Answer typing has proved effective both for text-
based QA (Ravichandran and Hovy, 2002) and
KB-QA (Bast and Haussmann, 2015; Savenkov
and Agichtein, 2016), for example, in ranking of
answers (Murdock et al., 2012) or queries (Yavuz

“who is the president of the us who played in bedtime
for bonzo?”
“who played for ac milan and inter milan?”
“what movie did russell crowe and denzel washington
work on together?”
“which country were the adidas and puma footwear
founded?”

Table 4: Questions that could be answered only
when TIPI was used as a plug-in.

et al., 2016). Answer typing was mostly limited to
considering coarse-grained types (Bast and Hauss-
mann, 2015; Lally et al., 2012) and lexical answer
types (Berant and Liang, 2015; Abujabal et al.,
2017). Both such modes fail when the answer
type is not explicit. More recently, Yavuz et al.
(2016) exploit more implicit type cues for KB-
QA: but their method of creating training data is
context-agnostic, which we remedy in our work.
An early line of work deals with question classifi-
cation (Li and Roth, 2002; Blunsom et al., 2006;
Huang et al., 2008), but they were designed for a
handful of TREC types and is not really relevant
for KB-QA with thousands of distinct classes. Fi-
nally, this work is the first to harness answer types
for compositional KB-QA.

6 Conclusion

We presented TIPI, a mechanism for enabling KB-
QA systems to answer compositional questions
using answer type prediction. TIPI relies on a fine-
grained answer typing module, that respects ques-
tion context and type hierarchy. Experiments on
a recent benchmark show that TIPI achieves state-
of-the-art performance under single-query execu-
tion, and substantial query reduction when the
top-1 query constraint is relaxed to admit more
queries. Improving question decomposition, and
handling more implicit forms of question compo-
sitionality, are promising future directions.
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