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Abstract

This paper presents the model we developed
for the shallow track of the 2019 NLG Sur-
face Realization Shared Task. The model re-
constructs sentences whose word order and
word inflections were removed. We divided
the problem into two sub-problems: reorder-
ing and inflecting. For the purpose of reorder-
ing, we used a pointer network integrated with
a transformer model as its encoder-decoder
modules. In order to generate the inflected
forms of tokens, a Feed Forward Neural Net-
work was employed.

1 Introduction

The goal of Natural Language Generation (NLG)
is to produce natural texts given structured data.
Typically, NLG is sub-divided into two tasks:
Content Planning and Surface Realization (Hovy
et al., 1996; Reiter and Dale, 2000). While Con-
tent Planning focuses on selecting the most appro-
priate content to convey, Surface Realization pro-
duces the linear form of the text from this selected
data following a given grammar.

Although the field of Natural Language Pro-
cessing (NLP) has witnessed significant progress
in the last few years, NLG, and surface realization
in particular, still performs significantly below hu-
man performance.

Recently, several shared tasks have been pro-
posed to improve the state of the art in specific
NLG tasks (eg. Dušek et al. (2019); May and
Priyadarshi (2017)). In particular, the Surface Re-
alization Shared Task 2019 (SR’19) (Mille et al.,
2019) aims to provide common-ground datasets
for developing and evaluating NLG systems. Sim-
ilarly to SR’18 (Mille et al., 2018), SR’19 pro-
posed two tracks: a shallow track and a deep
track. In the shallow track, unordered and lem-
matized tokens with universal dependency (UD)

structures (de Marneffe et al., 2014) were provided
to participants and systems were required to re-
order and inflect the tokens to produce final sen-
tences. The deep track is similar to the shallow
track but functional words and surface-oriented
morphological information were removed as well.
In addition to determining token order and inflec-
tions, systems participating in the deep track also
had to determine the omitted words.

We decided to only participate in the shallow
track. We used a model based on the transformer
encoder-decoder architecture (Vaswani et al.,
2017) combined with a pointer network (Vinyals
et al., 2015) to reconstruct the word order from the
input provided and a Feed Forward Neural Net-
work to produce inflections. Based on the hu-
man evaluation, our model has an average score
of 48.1% and 60.9% on all the English datasets
for Readability/Quality and Meaning Similarity
respectively.

2 Background

Pointer networks are types of encoder-decoder
models where the output corresponds to a position
in the input sequences (Vinyals et al., 2015). One
of the main advantages of pointer networks com-
pared to standard sequence-to-sequence models is
that the number of output classes depends on the
length of the input. This feature can be useful to
address problems involving sorting variable sized
sequences such as required at SR’19.

In Vinyals et al. (2015), Recurrent Neural Net-
works (RNNs) are used as encoder and decoder.
RNNs compute the context representation based
on the order of the input sequences. In cases where
there is no information regarding the correct order
of the input sequences, using an RNN-based en-
coder cannot provide a proper context representa-
tion for the decoder.
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Transformer models constitute an alternative to
RNNs as they entirely rely on the self-attention
mechanism (Vaswani et al., 2017). Transformer
models have achieved state of the art performance
in many NLP tasks such as machine translation
(Vaswani et al., 2017) and language modeling (De-
vlin et al., 2019; Radford et al., 2019).

The encoder and decoder modules of trans-
former models consist of multiple layers of
stacked self-attention and point-wise fully con-
nected layers. The encoder of the transformer con-
sists in several encoder layers, each of which is
composed of two sub-layers. The first sub-layer
has a multi-head attention which consists of sev-
eral layers of self-attention computing on the same
input, and the second sub-layer is a feed-forward
network. The output of each sub-layer is added
with a residual connection from their input fol-
lowed by a normalization layer. The decoder mod-
ule consists of several layers similar to the en-
coder, where the decoder layers have an extra sub-
layer of encoder-decoder attention.

Transformer models have no information re-
garding the order of the input sequence. Hence
“Mary killed John” and “John killed Mary” have
the same internal representations. To alleviate this
issue, Vaswani et al. (2017) considered using po-
sitional encoding summed to the embedding of
each word. Because the transformer without po-
sitional encoding does not rely on the order of
the input sequence, this architecture constitutes a
promising option for the SR’19 where the correct
order of the input sequence were removed (see
Section 3).

3 Dataset

For the shallow track, training and development
sets were provided for 11 different languages.
These were taken from the Universal Dependency
(UD) datasets (de Marneffe et al., 2014). The
correct token order within the sentences was re-
moved by shuffling the tokens. In total, 7 features
were provided by the organizers. Out of these fea-
tures, FEATS contained more than 40 morpholog-
ical sub-features from the universal feature inven-
tory and the relative linear order with respect to
the governor (Lin). Table 1 lists the 8 features
used by our model: 6 features of the UD structure,
in addition to 2 features for Lin (the Lin feature
divided into its absolute value and its sign).

In particular, we worked only on the En-

Figure 1: The model architecture used for the shallow
track at SR’19

glish datasets, which consists of four train-
ing and development pairs. We concate-
nated all four training sets (en ewt-ud-train,
en gum-ud-train, en lines-ud-train
and en partut-ud-train) into a single one
containing 19,976 sentences, with the longest sen-
tence containing 209 words.

Because the development sets provided by the
SR’19 organizers are not labeled, we divided the
training data in two parts; training (18, 000 sen-
tences) and validation (1, 967 sentences). We re-
moved all sentences longer than 100 tokens for ef-
ficiency reasons.1

4 Model

Inspired by previous work from SR’18 (Mille
et al., 2018) that used pointer networks to recon-
struct unordered sentences (Elder and Hokamp,
2018), we developed a similar model using a
pointer network integrated with a transformer as
its encoder and decoder. As shown in Figure 1,
our model is composed of five modules: input em-
bedding, encoder, decoder, pointer, and token gen-
eration. In the following, we describe each module
in more detail.

4.1 Input embedding
In order to train the model, we embedded each
feature separately into vectors and then concate-
nated them. Table 1 indicates the embedding size
of each feature. For the token embeddings, we em-
ployed the GloVe pretrained embeddings of size
300 (Pennington et al., 2014), while the remaining
feature embeddings are trained from scratch. At
the end, the concatenated vector (of size 393) is
linearly mapped into the desired embedding size
(512 in our case, see Section 5).

4.2 Encoder
The embedded input is fed into the encoder to
compute its representation. The encoder mod-

1This removed 9 sentences from the training sets.
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# Feature Feature description Embedding size
1 Token Lemma or stem of word form 300
2 UPOS Universal part-of-speech tag 10
3 XPOS Language-specific part-of-speech tag 10
4 Deprel Universal dependency relation to the Head 10
5 Head Head of the current word 20
6 Index Word index 20
7 Lin Relative linear order with respect to the governor 20
8 Lin sign The sign of the Lin feature 3

All Concatenation of all features 393

Table 1: The 8 features used in our model with their corresponding embedding sizes

ule uses the transformer architecture described
in Vaswani et al. (2017). Since the input data does
not provide any ordering information, we directly
feed the embedded input into the encoder without
summing it with the positional encoding of the to-
kens.

4.3 Decoder
The decoder in the transformer model receives
the previously generated tokens alongside the en-
coded representation from the encoder as its in-
put to generate the next token. However, since our
task is to produce an ordering rather than gener-
ate tokens, we decided to feed the same embed-
dings used for the encoder (see Section 4.1) in its
correct order. Since the correct order for the pre-
viously generated tokens is determined in the de-
coding phase, we add the positional encoding with
the embedded input.

4.4 Pointer
To find the next token, we deploy the attention
mechanism described in Vaswani et al. (2017) and
in Equation 1.

Attention(Q,V,K) = softmax

(
QKT

√
dk

)
V (1)

In each decoding step, the keys (K) and values
(V ) come from the embedded input and the query
(Q) is defined by the output of the decoder (in this
setup the keys and query have a dimension of dk).
The pointer selects the most probable embedded
input as the next input to the decoder. During test
time, we mask out the previously selected embed-
ded inputs so that they are not selected again.

4.5 Token generation
The Pointer Network orders the given lemmatized
tokens based on the input features. However, the
desired output should be the inflected form of the
input tokens. To this end, the token generation

module (see Figure 1) is designed to generate the
inflected form of the tokens, where its input is the
concatenation of the selected embedded input to-
ken with the decoder’s output. The output of this
module is the probability over all the words in the
vocabulary. This module consists of two feed-
forward layers with a ReLU activation function.
The last layer is initialized with pretrained GloVe
embeddings in order to provide a better general-
ization on unseen tokens.

5 Experiments and Results

5.1 Model Configuration

The model submitted to SR’19, under the team
name CLaC, has the following configuration op-
timized on the validation set.

The encoder and decoder of the model have 4
layers each with 8 heads (number of attention in
each layer). All the embedding sizes of the en-
coder and decoder layers as well as input embed-
ding are set to 512.

To preserve the GloVe embeddings, we froze
the weights of both token embeddings and the last
layer of the token generation module.

We suspected that the Head and Index fea-
tures (see Table 1) constituted valuable informa-
tion regarding the dependency tree structure of the
sentences. Therefore, to ensure the model does not
memorize the actual value of these features, but
rather their relationship, in each training iteration,
we randomly changed the values of these features
while keeping the tree structure relationship intact.

The model was trained using two cross-entropy
loss functions: order loss for the pointer and token
loss for the generation module. We observed train-
ing with the order loss and then fine tuning on both
losses increased the performance of the model.

The final model trained for 60 epochs, where
training on the order loss is done for 30 epochs,
and fine tuning the order and token losses were
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Tokenized Detokenized
# Dataset BLEU NIST DIST BLEU NIST DIST
1

In-domain

en ewt-ud-test 22.08 9.77 45.99 14.62 7.21 44.7
2 en gum-ud-test 15.32 8.64 38.13 10.55 6.53 36.97
3 en lines-ud-test 15.30 8.23 40.40 9.81 6.10 39.08
4 en partut-ud-test 10.07 7.14 36.21 7.45 5.57 35.32
5 Out-of-domain en pud-ud-test 12.36 8.83 36.26 9.11 6.66 35.23
6 Predicted en ewt-Pred-HIT-edit 21.21 9.69 43.59 14.14 7.23 42.41
7 en pud-Pred-LATTICE 12.89 8.82 36.67 9.29 6.69 35.53

Table 2: Results of our submission in the shallow track task of SR’19

done on the remaining 30 epochs. The initial
learning rate was set to 1 × 10−4. We also took
advantage of learning rate decay with the factor of
0.5 when there is no improvement on the valida-
tion loss. A dropout rate of 0.3 was used on the
encoder, decoder, and input embedding module.

The model was implemented using the PyTorch
1.1 framework. For the transformer encoder and
decoder, we modified the fairseq transformer im-
plementation of Ott et al. (2019).

In the test phase, we used tokens generated by
the model as the final output. When encountering
unknown tokens, the model uses the input token
where the pointer points at.

5.2 Results
At SR’19, three types of test sets were given: In-
domain, Out-of-domain, and Predicted. The In-
domain datasets share the same domain as the
training data, while Out-of-domain dataset does
not. The Predicted datasets are those where the
annotation were built using parser outputs from
the Universal Dependency Parsing shared task
2018 (Zeman et al., 2018) instead of the gold syn-
tactic annotations. Evaluation was performed in
both a tokenized and detokenized fashion.

Table 2 shows the results of our model on
the test data. As shown in Table 2, our
model achieved its highest performance on the
en ewt-ud-test dataset with a BLEU score
of 22.08 for tokenized among the In-domain
datasets. Whereas the lowest score is for
en partut-ud-test with a BLEU of 10.07.
Clearly, the performance of the model on these
four datasets is directly related to the relative size
of corresponding training set in the concatenated
training set used to train our model. For ex-
ample, the en ewt-ud-train dataset accounts
for the greatest proportion of our training set
(63%) and achieves the highest BLEU; whereas
en partut-ud-train accounts for only 9%
of the training samples yielding the lowest BLEU

Figure 2: Human evaluation results compared to all
participants of the shallow track at SR’19

of 10.07 with en partut-ud-test.
Based on human evaluation, our submitted sys-

tem achieved average Readability/Quality score of
48.1% and a Meaning Similarity score of 60.9%
with the rank of 12 and 14 respectively among the
16 participating systems. The results are shown in
the Figure 2.

6 Conclusions

In this paper, we have presented the model we
developed for SR’19. The proposed system is
composed of a pointer network where its encoder
and decoder modules borrowed from transformer,
aim to reconstruct the tokens’ order and inflection.
The model achieved its best performance on the
English datasets with the average scores of 48.1
and 60.9 for the Readability/Quality and Mean-
ing Similarity respectively. Although this perfor-
mance is lower than expected, the lack of training
data is observable. It was noticeable that training
the model in an end-to-end fashion without fea-
ture engineering could not lead the model to learn
meaningful representation of the input features.

As future work, it would be interesting to inves-
tigate further the model’s sensitivity to the training
size, as we noted in our submission’s results, by
training it on a much larger dataset. We will also
further investigate the use of other features pro-
vided in the universal dependency structure. An-
other avenue worth looking into is the use of pre-
trained language models. Finally, a thorough error
analysis would provide us with hints as to where
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the model is weaker, in the ordering task or in the
inflection task.
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