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Abstract

We investigate the compositional struc-
ture of message vectors computed by a
deep network trained on a communication
game. By comparing truth-conditional
representations of encoder-produced mes-
sage vectors to human-produced refer-
ring expressions, we are able to identify
aligned (vector, utterance) pairs with the
same meaning. We then search for struc-
tured relationships among these aligned
pairs to discover simple vector space
transformations corresponding to nega-
tion, conjunction, and disjunction. Our
results suggest that neural representations
are capable of spontaneously developing
a “syntax” with functional analogues to
qualitative properties of natural language.1

1 Introduction

The past year has seen a renewal of interest in end-
to-end learning of communication strategies be-
tween pairs of agents represented with deep net-
works (Wagner et al., 2003). Approaches of this
kind make it possible to learn decentralized poli-
cies from scratch (Foerster et al., 2016; Sukhbaatar
et al., 2016), with multiple agents coordinating
via learned communication protocol. More gener-
ally, any encoder–decoder model (Sutskever et al.,
2014) can be viewed as implementing an analo-
gous communication protocol, with the input en-
coding playing the role of a message in an arti-
ficial “language” shared by the encoder and de-
coder (Yu et al., 2016). Earlier work has found that
under suitable conditions, these protocols acquire
simple interpretable lexical (Dircks and Stoness,
1999; Lazaridou et al., 2016) and sequential struc-
ture (Mordatch and Abbeel, 2017), even without
natural language training data.

1 Code and data are available at http://github.
com/jacobandreas/rnn-syn.
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Figure 1: Overview of our task. Given a dataset of referring
expression games, example human expressions, and their as-
sociated logical forms, we compute explicit denotations both
for the original task and in other possible tasks—giving rise to
a truth-conditional representation of the natural language. We
train a recurrent encoder–decoder model to solve the same
tasks directly, and use the decoder to generate comparable
truth-conditional representations of neural encodings.

One of the distinguishing features of natural
language is compositionality: the existence of op-
erations like negation and coordination that can be
applied to utterances with predictable effects on
meaning. RNN models trained for natural lan-
guage processing tasks have been found to learn
representations that encode some of this composi-
tional structure—for example, sentence represen-
tations for machine translation encode explicit fea-
tures for certain syntactic phenomena (Shi et al.,
2016) and represent some semantic relationships
translationally (Levy et al., 2014). It is thus nat-
ural to ask whether these “language-like” struc-
tures also arise spontaneously in models trained
directly from an environment signal. Rather than
using language as a form of supervision, we pro-
pose to use it as a probe—exploiting post-hoc sta-
tistical correspondences between natural language
descriptions and neural encodings to discover reg-
ular structure in representation space.

To do this, we need to find (vector, string)
pairs with matching semantics, which requires
first aligning unpaired examples of human–human
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communication with network hidden states. This
is similar to the problem of “translating” RNN rep-
resentations recently investigated in Andreas et al.
(2017). Here we build on that approach in order to
perform a detailed analysis of compositional struc-
ture in learned “languages”. We investigate a com-
munication game previously studied by FitzGerald
et al. (2013), and make two discoveries: in a model
trained without any access to language data,

1. The strategies employed by human speakers
in a given communicative context are surpris-
ingly good predictors of RNN behavior in the
same context: humans and RNNs send mes-
sages whose interpretations agree on nearly
90% of object-level decisions, even outside
the contexts in which they were produced.

2. Interpretable language-like structure natu-
rally arises in the space of representations.
We identify geometric regularities corre-
sponding to negation, conjunction, and dis-
junction, and show that it is possible to lin-
early transform representations in ways that
approximately correspond to these logical
operations.

2 Task

We focus our evaluation on a communication
game due to FitzGerald et al. (2013) (Figure 1,
top). In this game, the speaker observes (1) a
world W of 1–20 objects labeled with with at-
tributes and (2) a designated target subset X of ob-
jects in the world. The listener observes only W ,
and the speaker’s goal is to communicate a rep-
resentation of X that enables the listener to accu-
rately reconstruct it. The GENX dataset collected
for this purpose contains 4170 human-generated
natural-language referring expressions and corre-
sponding logical forms for 273 instances of this
game. Because these human-generated expres-
sions have all been pre-annotated, we treat lan-
guage and logic interchangeably and refer to both
with the symbol e. We write e(W ) for the expres-
sion generated by a human for a particular world
W , and JeKW for the result of evaluating the logi-
cal form e against W .

We are interested in using language data of this
kind to analyze the behavior of a deep model
trained to play the same game. We focus our anal-
ysis on a standard RNN encoder–decoder, with the
encoder playing the role of the speaker and the

decoder playing the role of the listener. The en-
coder is a single-layer RNN with GRU cells (Cho
et al., 2014) that consumes both the input world
and target labeling and outputs a 64-dimensional
hidden representation. We write f(W ) for the
output of this encoder model on a world W . To
make predictions, this representation is passed to
a decoder implemented as a multilayer perceptron.
The decoder makes an independent labeling deci-
sion about every object in W (taking as input both
f and a feature representation of a particular object
Wi). We write JfKW for the full vector of decoder
outputs on W . We train the model maximize clas-
sification accuracy on randomly-generated scenes
and target sets of the same form as in the GENX
dataset.

3 Approach

We are not concerned with the RNN model’s raw
performance on this task (it achieves nearly per-
fect accuracy). Instead, our goal is to explore
what kinds of messages the model computes in
order to achieve this accuracy—and specifically
whether these messages contain high-level seman-
tics and low-level structure similar to the referring
expressions produced by humans. But how do we
judge semantic equivalence between natural lan-
guage and vector representations? Here, as in An-
dreas et al. (2017), we adopt an approach inspired
by formal semantics, and represent the meaning of
messages via their truth conditions (Figure 1).

For every problem instance W in the dataset,
we have access to one or more human messages
e(W ) as well as the RNN encoding f(W ). The
truth-conditional account of meaning suggests that
we should judge e and f to be equivalent if they
designate the same set of of objects in the world
(Davidson, 1967). But it is not enough to com-
pare their predictions solely in the context where
they were generated—testing if JeKW = JfKW —
because any pair of models that achieve perfect ac-
curacy on the referring expression task will make
the same predictions in this initial context, regard-
less of the meaning conveyed.

Instead, we sample a collection of alternative
worlds {Wi} observed elsewhere in the dataset,
and compute a tabular meaning representation
rep(e) = {JeKWi

} by evaluating e in each world
Wi. We similarly compute rep(f) = {JfKWi

},
allowing the learned decoder model to play the
role of logical evaluation for message vectors. For
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Theory Objects Worlds Tables

A
ll

Random 0.50 0.00 0.00
Literal 0.74 0.27 0.05
Human 0.92 0.63 0.35

Table 1: Agreement with predicted model behavior for the
high-level semantic correspondence task, computed for ob-
jects (single entries in tabular representation), worlds (rows),
and full tables. Referring expressions e generated by humans
in a single communicative context are highly predictive of
how learned representations f will be interpreted by the de-
coder across multiple contexts.

logically equivalent messages, these tabular rep-
resentations are guaranteed to be identical, so the
sampling procedure can be viewed as an approxi-
mate test of equivalence. It additionally allows us
to compute softer notions of equivalence by mea-
suring agreement on individual worlds or objects.

4 Interpreting the meaning of messages

We begin with the simplest question we can an-
swer with this tool: how often do the messages
generated by the encoder model have the same
meaning as messages generated by humans for the
same context? Again, our goal is not to evaluate
the performance of the RNN model, but instead
our ability to understand its behavior. Does it send
messages with human-like semantics? Is it more
explicit? Or does it behave in a way indistinguish-
able from a random classifier?

For each scene in the GENX test set, we com-
pute the model-generated message f and its tabu-
lar representation rep(f), and measure the extent
to which this agrees with representations produced
by three “theories” of model behavior (Figure 2):
(1) a random theory that accepts or rejects ob-
jects with uniform probability, (2) a literal the-
ory that predicts membership only for objects that
exactly match some object in the original target
set, and (3) a human theory that predicts accord-
ing to the most frequent logical form associated
with natural language descriptions of the target set
(as described in the preceding section). We eval-
uate agreement at the level of individual objects,
worlds, and full tabular meaning representations.

Results are shown in Table 1. Model behavior
is well explained by human decisions in the same
context: object-level decisions can be predicted
with close to 90% accuracy based on human judg-
ments alone, and a third of message pairs agree
exactly in every sampled scene, providing strong
evidence that they carry the same semantics.

These results suggest that the model has learned
a communication strategy that is at least super-
ficially language-like: it admits representations
of the same kinds of communicative abstractions
that humans use, and makes use of these abstrac-
tions with some frequency. But this is purely
a statement about the high-level behavior of the
model, and not about the structure of the space
of representations. Our primary goal is to deter-
mine whether this behavior is achieved using low-
level structural regularities in vector space that can
themselves be associated with aspects of natural
language communication.

5 Interpreting the structure of messages

For this we turn to a focused investigation of three
specific logical constructions used in natural lan-
guage: a unary operation (negation) and two bi-
nary operations (conjunction and disjunction). All
are used in the training data, with a variety of
scopes (e.g. all green objects that are not a tri-
angle, all the pieces that are not tan arches).

Because humans often find it useful to specify
the target set by exclusion rather than inclusion,
we first hypothesize that the RNN language might
find it useful to incorporate some mechanism cor-
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Figure 2: Evaluating theories of model behavior. First, the
encoder is run on an initial world (a), producing a represen-
tation whose meaning we would like to understand (see Fig-
ure 1). We then observe the behavior of the decoder holding
this representation fixed but replacing the underlying world
representation with alternatives like (b). We compare the true
decoder output to a number of theories of its behavior. The
random theory (d) outputs a random decision for every object.
The literal theory (e) predicts that the decoder will output a
positive label only on those objects that exactly match some
object in the initial observation. The human theory (f) assigns
labels according to the logical semantics of the utterance pro-
duced by a human presented with the initial observation.
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Theory Objects Worlds Tables

N
eg

. Random 0.50 0.00 0.00
Literal 0.50 0.12 0.03

Negation 0.97 0.81 0.45
D

is
j. Random 0.50 0.00 0.00

Literal 0.58 0.09 0.01
Disjunction 0.92 0.54 0.19

C
on

j. Random 0.50 0.00 0.00
Literal 0.81 0.19 0.01

Conjunction 0.90 0.56 0.37

Table 2: Agreement with predicted model behavior for nega-
tion, conjunction, and disjunction tasks (top to bottom). Eval-
uation is performed on transformed message vectors as de-
scribed in Section 5. We discover a robust linear transforma-
tion of message vectors corresponding to negation, as well as
evidence of structured representations of binary operations.

responding to negation, and that messages can be
predictably “negated” in vector space. To test this
hypothesis, we first collect examples of the form
(e, f, e′, f ′), where e′ = ¬e, rep(e) = rep(f),
and rep(e′) = rep(f ′). In other words, we find
pairs of pairs of RNN representations f and f ′ for
which the natural language messages (e, e′) serve
as a denotational certificate that f ′ behaves as a
negation of f . If the learned model does not have
any kind of primitive notion of negation, we ex-
pect that it will not be possible to find any kind of
predictable relationship between pairs (f, f ′). (As
an extreme example, we could imagine every pos-
sible prediction rule being associated with a differ-
ent point in the representation space, with the cor-
respondence between position and behavior essen-
tially random.) Conversely, if there is a first-class
notion of negation, we should be able to select an
arbitrary representation vector f with an associ-
ated referring expression e, apply some transfor-
mation N to f , and be able to predict a priori how
the decoder model will interpret the representation
Nf—i.e. in correspondence with ¬e.

Here we make the strong assumption that the
negation operation is not only predictable but lin-
ear. Previous work has found that linear opera-
tors are powerful enough to capture many hier-
archical and relational structures (Paccanaro and
Hinton, 2002; Bordes et al., 2014). Using ex-
amples (f, f ′) collected from the training set as
described above, we compute the least-squares
estimate N̂ = arg minN

∑ ||Nf − f ′||22 . To
evaluate, we collect example representations from
the test set that are equivalent to known logical
forms, and measure how frequently model behav-
iors rep(Nf) agree with the logical predictions
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Figure 3: Principal components of structured message trans-
formations discovered by our experiments. (a) Negation:
black and white dots show raw message vectors denotation-
ally equivalent to the provided logical cluster label (Sec-
tion 3). Red dots show the result of transforming black dots
with the estimated negation operation N . (b) The correspond-
ing experiment for disjunction using the transformation M .

rep(¬e)—in other words, how often the linear
operator N actually corresponds to logical nega-
tion. Results are shown in the top portion of Ta-
ble 2. Correspondence with the logical form is
quite high, resulting in 97% agreement at the level
of individual objects and 45% agreement on full
representations. We conclude that the estimated
linear operator N̂ is analogous to negation in nat-
ural language. Indeed, the behavior of this opera-
tor is readily visible in Figure 3: predicted negated
forms (in red) lie close in vector space to their true
values, and negation corresponds roughly to mir-
roring across a central point.

In our final experiment, we explore whether the
same kinds of linear maps can be learned for the
binary operations of conjunction and disjunction.
As in the previous section, we collect examples
from the training data of representations whose de-
notations are known to correspond to groups of
logical forms in the desired relationship—in this
case tuples (e, f, e′, f ′, e′′, f ′′), where rep(e) =
rep(f), rep(e′) = rep(f ′), rep(e′′) = rep(f ′′) and
either e′′ = e ∧ e′ (conjunction) or e′′ = e ∨ e′

(disjunction). Since we expect that our operator
will be symmetric in its arguments, we solve for
M̂ = arg minM

∑ ||Mf + Mf ′ − f ′′||22.
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Results are shown in the bottom portions of
Table 2. Correspondence between the behavior
predicted by the contextual logical form and the
model’s actual behavior is less tight than for nega-
tion. At the same time, the estimated operators
are clearly capturing some structure: in the case of
disjunction, for example, model interpretations are
correctly modeled by the logical form 92% of the
time at the object level and 19% of the time at the
denotation level. This suggests that the operations
of conjunction and disjunction do have some func-
tional counterparts in the RNN language, but that
these functions are not everywhere well approxi-
mated as linear.

6 Conclusions

Building on earlier tools for identifying neural
codes with natural language strings, we have pre-
sented a technique for exploring compositional
structure in a space of vector-valued representa-
tions. Our analysis of an encoder–decoder model
trained on a reference game identified a number
of language-like properties in the model’s repre-
sentation space, including transformations corre-
sponding to negation, disjunction, and conjunc-
tion. One major question left open by this analy-
sis is what happens when multiple transformations
are applied hierarchically, and future work might
focus on extending the techniques in this paper to
explore recursive structure. We believe our exper-
iments so far highlight the usefulness of a deno-
tational perspective from formal semantics when
interpreting the behavior of deep models.
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