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Abstract

Argumentative Zoning (AZ) – analysis of the
argumentative structure of a scientific paper –
has proved useful for a number of informa-
tion access tasks. Current approaches to AZ
rely on supervised machine learning (ML).
Requiring large amounts of annotated data,
these approaches are expensive to develop and
port to different domains and tasks. A poten-
tial solution to this problem is to use weakly-
supervised ML instead. We investigate the
performance of four weakly-supervised clas-
sifiers on scientific abstract data annotated for
multiple AZ classes. Our best classifier based
on the combination of active learning and self-
training outperforms our best supervised clas-
sifier, yielding a high accuracy of 81% when
using just 10% of the labeled data. This re-
sult suggests that weakly-supervised learning
could be employed to improve the practical
applicability and portability of AZ across dif-
ferent information access tasks.

1 Introduction

Many practical tasks require accessing specific types
of information in scientific literature. For example,
a reader of scientific literature may be looking for
information about the objective of the study in ques-
tion, the methods used in the study, the results ob-
tained, or the conclusions drawn by authors. Sim-
ilarly, many Natural Language Processing (NLP)
tasks focus on the extraction of specific types of in-
formation in documents only.

To date, a number of approaches have been pro-
posed for sentence-based classification of scien-

tific literature according to categories of information
structure (or discourse, rhetorical, argumentative or
conceptual structure, depending on the framework
in question). Some of these classify sentences ac-
cording to typical section names seen in scientific
documents (Lin et al., 2006; Hirohata et al., 2008),
while others are based e.g. on argumentative zones
(Teufel and Moens, 2002; Mizuta et al., 2006; Teufel
et al., 2009), qualitative dimensions (Shatkay et al.,
2008) or conceptual structure (Liakata et al., 2010)
of documents.

The best of current approaches have yielded
promising results and proved useful for information
retrieval, information extraction and summarization
tasks (Teufel and Moens, 2002; Mizuta et al., 2006;
Tbahriti et al., 2006; Ruch et al., 2007). How-
ever, relying on fully supervised machine learning
(ML) and a large body of annotated data, existing
approaches are expensive to develop and port to dif-
ferent scientific domains and tasks.

A potential solution to this bottleneck is to de-
velop techniques based on weakly-supervised ML.
Relying on a small amount of labeled data and
a large pool of unlabeled data, weakly-supervised
techniques (e.g. semi-supervision, active learning,
co/tri-training, self-training) aim to keep the advan-
tages of fully supervised approaches. They have
been applied to a wide range of NLP tasks, includ-
ing named-entity recognition, question answering,
information extraction, text classification and many
others (Abney, 2008), yielding performance levels
similar or equivalent to those of fully supervised
techniques.

To the best of our knowledge, such techniques
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have not yet been applied to the analysis of infor-
mation structure of scientific documents by afore-
mentioned approaches. Recent experiments have
demonstrated the usefulness of weakly-supervised
learning for classifying discourse relations in scien-
tific texts, e.g. (Hernault et al., 2011). However, fo-
cusing on local (rather than global) structure of doc-
uments and being much more fine-grained in nature,
this related task differs from ours considerably.

In this paper, we investigate the potential of
weakly-supervised learning for Argumentative Zon-
ing (AZ) of scientific abstracts. AZ is an approach to
information structure which provides an analysis of
the rhetorical progression of the scientific argument
in a document (Teufel and Moens, 2002). It has
been used to analyze scientific texts in various disci-
plines – including computational linguistics (Teufel
and Moens, 2002), law, (Hachey and Grover, 2006),
biology (Mizuta et al., 2006) and chemistry (Teufel
et al., 2009) – and has proved useful for NLP tasks
such as summarization (Teufel and Moens, 2002).
Although the basic scheme is said to be discipline-
independent (Teufel et al., 2009), its application to
different domains has resulted in various modifica-
tions and laborious annotation exercises. This sug-
gests that a weakly-supervised approach would be
more practical than a fully supervised one for the
real-world application of AZ.

Taking two supervised classifiers as a comparison
point – Support Vector Machines (SVM) and Con-
ditional Random Fields (CRF) – we investigate the
performance of four weakly-supervised classifiers
on the AZ task: two based on semi-supervised learn-
ing (transductive SVM and semi-supervised CRF)
and two on active learning (Active SVM alone and
in combination with self-training).

The results are promising. Our best weakly-
supervised classifier (Active SVM with self-
training) outperforms the best supervised classifier
(SVM), yielding high accuracy of 81% when using
just 10% of the labeled data. When using just one
third of the labeled data, it performs equally well as
a fully supervised SVM which uses 100% of the la-
beled data. Our investigation suggests that weakly-
supervised learning could be employed to improve
the practical applicability and portability of AZ to
different information access tasks.

2 Data

We used in our experiments the recent dataset of
(Guo et al., 2010). Guo et al. (2010) provide a cor-
pus of 1000 biomedical abstracts (consisting of 7985
sentences and 225785 words) annotated according
to three schemes of information structure – those
based on section names (Hirohata et al., 2008), AZ
(Mizuta et al., 2006) and Core Scientific Concepts
(CoreSC) (Liakata et al., 2010). We focus here on
AZ only, because it subsumes all the categories of
the simple section name -based scheme, and accord-
ing to the inter-annotator agreement and ML experi-
ments reported by Guo et al. (2010) it performs bet-
ter on this data than the fairly fine-grained CoreSC
scheme.

AZ is a scheme which provides an analysis of
the rhetorical progression of the scientific argument,
following the knowledge claims made by authors.
(Teufel and Moens, 2002) introduced AZ and ap-
plied it first to computational linguistics papers.
(Hachey and Grover, 2006) applied the scheme later
to legal texts and (Mizuta et al., 2006) modified it for
biology papers. More recently, (Teufel et al., 2009)
introduced a refined version of AZ and applied it to
chemistry papers.

The biomedical dataset of (Guo et al., 2010) has
been annotated according to the version of AZ de-
veloped for biology papers (Mizuta et al., 2006)
(with only minor modifications concerning zone
names). Seven categories of this scheme (out of the
10 possible) actually appear in abstracts and in the
resulting corpus. These are shown and explained
in Table 1. For example, the Method zone (METH)
is for sentences which describe a way of doing re-
search, esp. according to a defined and regular
plan; a special form of procedure or characteristic
set of procedures employed in a field of study as a
mode of investigation and inquiry.

An example of a biomedical abstract annotated
according to AZ is shown in Figure 1, with different
zones highlighted in different colors. For example,
the RES zone is highlighted in lemon green.

Table 2 shows the distribution of sentences per
scheme category in the corpus: Results (RES) is
by far the most frequent zone (accounting for 40%
of the corpus), while Background (BKG), Objective
(OBJ), Method (METH) and Conclusion (CON) cover
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Table 1: Categories of AZ appearing in the corpus of (Guo et al., 2010)
Category Abbr. Definition
Background BKG The circumstances pertaining to the current work, situation, or its causes, history, etc.
Objective OBJ A thing aimed at or sought, a target or goal
Method METH A way of doing research, esp. according to a defined and regular plan; a special form

of procedure or characteristic set of procedures employed in a field of study as a mode
of investigation and inquiry

Result RES The effect, consequence, issue or outcome of an experiment; the quantity, formula,
etc. obtained by calculation

Conclusion CON A judgment or statement arrived at by any reasoning process; an inference, deduction,
induction; a proposition deduced by reasoning from other propositions; the result of
a discussion, or examination of a question, final determination, decision, resolution,
final arrangement or agreement

Related work REL A comparison between the current work and the related work
Future work FUT The work that needs to be done in the future

Figure 1: An example of an annotated abstract
Butadiene (BD) metabolism shows gender, species and concentration dependency, making the extrapolation of animal results to humans complex. BD is metabolized mainly
by cytochrome P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2;3,4-diepoxybutane (DEB) and 1,2-epoxy-butanediol (EB-diol). For accurate risk assessment it is
important to elucidate species differences in the internal formation of the individual epoxides in order to assign the relative risks associated with their different mutagenic
potencies. Analysis of N-terminal globin adducts is a common approach for monitoring the internal formation of BD derived epoxides. Our long term strategy is to develop
an LC-MS/MS method for simultaneous detection of all three BD hemoglobin adducts. This approach is modeled after the recently reported immunoaffinity LC-MS/MS
method for the cyclic N,N-(2,3-dihydroxy-1,4-butadyil)-valine (pyr-Val, derived from DEB). We report herein the analysis of the EB-derived 2-hydroxyl-3-butenyl-valine
peptide (HB-Val). The procedure utilizes trypsin hydrolysis of globin and immunoaffinity (IA) purification of alkylated heptapeptides. Quantitation is based on LC-MS/MS
monitoring of the transition from the singly charged molecular ion of HB-Val (1-7) to the a(1) fragment. Human HB-Val (1-11) was synthesized and used for antibody
production. As internal standard, the labeled rat-[(13)C(5)(15)N]-Val (1-11) was prepared through direct alkylation of the corresponding peptide with EB. Standards were
characterized and quantified by LC-MS/MS and LC-UV. The method was validated with different amounts of human HB-Val standard. The recovery was >75% and
coefficient of variation <25%. The LOQ was set to 100 fmol/injection. For a proof of principal experiment, globin samples from male and female rats exposed to 1000 ppm
BD for 90 days were analyzed. The amounts of HB-Val present were 268.2+/-56 and 350+/-70 pmol/g (mean+/-S.D.) for males and females, respectively. No HB-Val was
detected in controls. These data are much lower compared to previously reported values measured by GC-MS/MS. The difference may be due higher specificity of the
LC-MS/MS method to the N-terminal peptide from the alpha-chain versus derivatization of both alpha- and beta-chain by Edman degradation, and possible instability of
HB-Val adducts during long term storage (about 10 years) between the analyses. These differences will be resolved by examining recently collected samples, using the same
internal standard for parallel analysis by GC-MS/MS and LC-MS/MS. Based on our experience with pyr-Val adduct assay we anticipate that this assay will be suitable for
evaluation of HB-Val in multiple species.

Background

Objective

Method
Result

Conclusion

Related work

Future work

Table 2: Distribution of sentences in the AZ-annotated
corpus

BKG OBJ METH RES CON REL FUT
Word 36828 23493 41544 89538 30752 2456 1174
Sentence 1429 674 1473 3185 1082 95 47
Sentence 18% 8% 18% 40% 14% 1% 1%

8-18% of the corpus each. Two categories are very
low in frequency, only covering 1% of the corpus
each: Related work (REL) and Future work (FUT).

Guo et al. (2010) report the inter-annotator agree-
ment between their three annotators: one linguist,
one computational linguist and one domain expert.
According to Cohen’s kappa (Cohen, 1960) the
agreement is relatively high: κ = 0.85.

3 Automatic identification of AZ

3.1 Features and feature extraction
Guo et al. (2010) used a variety of features in
their fully supervised ML experiments on different
schemes of information structure. Since their fea-
ture types cover the best performing feature types in
earlier works e.g. (Teufel and Moens, 2002; Lin et
al., 2006; Mullen et al., 2005; Hirohata et al., 2008;
Merity et al., 2009) we re-implemented and used
them in our experiment1. However, being aware
of the fact that some of these features may not be
optimal for weakly-supervised learning (i.e. when
learning from smaller data), we evaluate their per-
formance and suitability for the task later in sec-
tion 4.3.

• Location. Zones tend to appear in typical po-
sitions in abstracts. Each abstract was there-

1The only exception is the history feature which was left out
because it cannot be applied to all of our methods
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fore divided into ten parts (1-10, measured by
the number of words), and the location was de-
fined by the parts where the sentence begins
and ends.

• Word. All the words in the corpus.

• Bi-gram. Any combination of two adjacent
words in the corpus.

• Verb. All the verbs in the corpus.

• Verb Class. 60 verb classes appearing in
biomedical journal articles.

• Part-of-Speech – POS. The POS tag of each
verb in the corpus.

• Grammatical Relation – GR. Subject (nc-
subj), direct object (dobj), indirect object (iobj)
and second object (obj2) relations in the cor-
pus. e.g. (ncsubj observed 14 difference 5
obj). The value of this feature equals 1 if it
occurs in a particular sentence (and 0 if not).

• Subj and Obj. The subjects and objects ap-
pearing with any verbs in the corpus (extracted
from above GRs).

• Voice. The voice of verbs (active or passive) in
the corpus.

These features were extracted from the corpus us-
ing a number of tools. A tokenizer was used to detect
the boundaries of sentences and to separate punctu-
ation from adjacent words e.g. in complex biomed-
ical terms such as 2-amino-3,8-diethylimidazo[4,5-
f]quinoxaline. The C&C tools (Curran et al., 2007)
trained on biomedical literature were employed for
POS tagging, lemmatization and parsing. The
lemma output was used for creating Word, Bi-gram
and Verb features. The GR output was used for cre-
ating the GR, Subj, Obj and Voice features. The
”obj” marker in a subject relation indicates passive
voice (e.g. (ncsubj observed 14 difference 5 obj)).
The verb classes were acquired automatically from
the corpus using the unsupervised spectral cluster-
ing method of (Sun and Korhonen, 2009). To con-
trol the number of features we lemmatized the lexi-
cal items for all the features, and removed the words
and GRs with fewer than 2 occurrences and bi-grams
with fewer than 5 occurrences.

3.2 Machine learning methods
Support Vector Machines (SVM) and Conditional
Random Fields (CRF) have proved the best perform-
ing fully supervised methods in most recent works
on information structure, e.g. (Teufel and Moens,
2002; Mullen et al., 2005; Hirohata et al., 2008; Guo
et al., 2010). We therefore implemented these meth-
ods as well as weakly supervised variations of them:
active SVM with and without self-training, transduc-
tive SVM and semi-supervised CRF.

3.2.1 Supervised methods
SVM constructs hyperplanes in a multidimen-

sional space to separate data points of different
classes. Good separation is achieved by the hyper-
plane that has the largest distance from the nearest
data points of any class. The hyperplane has the
form w · x − b = 0, where w is its normal vec-
tor. We want to maximize the distance from the hy-
perplane to the data points, or the distance between
two parallel hyperplanes each of which separates the
data. The parallel hyperplanes can be written as:
w · x − b = 1 and w · x − b = −1, and the dis-
tance between them is 2

|w| . The problem reduces to:
Minimize |w| (in w, b)
Subject to

w · x− b ≥ 1 for x of one class,
w · x− b ≤ −1 for x of the other,

which can be solved by using the SMO algorithm
(Platt, 1999b). We used Weka software (Hall et al.,
2009) (employing its linear kernel) for SVM experi-
ments.

CRF is an undirected graphical model which de-
fines a probability distribution over the hidden states
(e.g. label sequences) given the observations. The
probability of a label sequence y given an observa-
tion sequence x can be written as:
p(y|x, θ) = 1

Z(x)exp(
∑

j θjFj(y, x)),
where Fj(y, x) is a real-valued feature function of
the states and the observations; θj is the weight of
Fj , and Z(x) is a normalization factor. The θ pa-
rameters can be learned using the L-BFGS algorithm
(Nocedal, 1980). We used Mallet software (McCal-
lum, 2002) for CRF experiments.

3.2.2 Weakly-supervised methods
Active SVM (ASVM) starts with a small amount of

labeled data, and iteratively chooses a proportion of
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unlabeled data for which SVM has less confidence
to be labeled (the labels can be restored from the
original corpus) and used in the next round of learn-
ing, i.e. active learning. Query strategies based on
the structure of SVM are frequently employed (Tong
and Koller, 2001; Novak et al., 2006). For exam-
ple, it is often assumed that the data points close to
the separating hyperplane are those that the SVM is
uncertain about. Unlike these methods, our learn-
ing algorithm compares the posterior probabilities
of the best estimate given each unlabeled instance,
and queries those with the lowest probabilities for
the next round of learning. The probabilities can be
obtained by fitting a Sigmoid after the standard SVM

(Platt, 1999a), and combined using a pairwise cou-
pling algorithm (Hastie and Tibshirani, 1998) in the
multi-class case. We used the SVM linear kernel in
Weka for classification, and the -M flag in Weka for
calculating the posterior probabilities.

Active SVM with self-training (ASSVM) is an ex-
tension of ASVM where each round of training has
two steps: (i) training on the labeled, and testing
on the unlabeled data, and querying; (ii) training on
both labeled and unlabeled/machine-labeled data by
using the estimates from step (i). The idea of ASSVM

is to make the best use of the labeled data, and to
make the most use of the unlabeled data.

Transductive SVM (TSVM) is an extension of
SVM which takes advantage of both labeled and un-
labeled data (Vapnik, 1998). Similar to SVM, the
problem is defined as:

Minimize |w| (in w, b, y(u))
Subject to

y(l)(w · x(l) − b) ≥ 1,
y(u)(w · x(u) − b) ≥ 1 ,
y(u) ∈ {−1, 1},

where x(u) is unlabeled data and y(u) the estimate
of its label. The problem can be solved by using
the CCCP algorithm (Collobert et al., 2006). We
used UniverSVM software (Sinz, 2011) for TSVM

experiments.
Semi-supervised CRF (SSCRF) can be imple-

mented with entropy regularization (ER). It ex-
tends the objective function on Labeled data∑

L log p(y(l)|x(l), θ) with an additional term∑
U

∑
Y p(y|x(u), θ) log p(y|x(u), θ) to minimize

the conditional entropy of the model’s predictions on
Unlabeled data (Jiao et al., 2006; Mann and Mccal-

lum, 2007). We used Mallet software (McCallum,
2002) for SSCRF experiments.

4 Experimental evaluation

4.1 Evaluation methods

We evaluated the ML results in terms of accuracy,
precision, recall, and F-measure against manual AZ
annotations in the corpus:

acc = no. of correctly classified sentences
total no. ofsentences in the corpus

p = no. of sentences correctly identified as Classi
total no. of sentences identified as Classi

r = no. of sentences correctly identified as Classi
total no. of sentences in Classi

f = 2∗p∗r
p+r

We used 10-fold cross validation for all the meth-
ods to avoid the possible bias introduced by rely-
ing on any particular split of the data. More specif-
ically, the data was randomly assigned to ten folds
of roughly the same size. Each fold was used once
as test data and the remaining nine folds as training
data. The results were then averaged.

Following (Dietterich, 1998), we used McNe-
mar’s test (McNemar, 1947) to measure the statisti-
cal significance between the results of different ML
methods. The chosen significance level was .05.

4.2 Results

Table 3 shows the results for the four weakly-
supervised and two supervised methods when 10%
of the training data (i.e. ∼700 sentences) has been
labeled. We can see that ASSVM is the best perform-
ing method with an accuracy of 81% and the macro

Table 3: Results when using 10% of the labeled data
Acc. F-score

MF BKG OBJ METH RES CON REL FUT
SVM .77 .74 .84 .68 .71 .82 .64 - -
CRF .70 .65 .75 .46 .48 .78 .76 - -
ASVM .80 .75 .88 .56 .68 .87 .78 .33
ASSVM .81 .76 .86 .56 .76 .88 .76 - -
TSVM .76 .73 .84 .61 .71 .79 .71 - -
SSCRF .73 .67 .76 .48 .52 .81 .78 - -

MF: Macro F-score of the five high frequency categories:
BKG, OBJ, METH, RES, CON.
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Figure 2: Learning curve for different methods when using 0-100% of the labeled data
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Figure 3: Area under learning curves at different intervals
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F-score of .76 (the macro F-score is calculated for
the 5 scheme categories which are found by all the
methods). ASVM performs nearly as well, with an
accuracy of 80% and F-score of .75. Both methods
outperform supervised SVM with a statistically sig-
nificant difference (p < .001).

TSVM is the lowest performing SVM-based
method. Yielding an accuracy of 76% and F-score
of .73 its performance is lower than that of the super-
vised SVM. However, it does outperform both CRF-
based methods. SSCRF performs better than CRF

with 3% higher accuracy and .02 higher F-score.
The difference in accuracy is statistically significant
(p < .001).

Only one method (ASVM) identifies six out of the
seven possible categories. Other methods identify
five categories. The 1-2 missing categories are very
low in frequency (accounting for 1% of the corpus
data each, see table 2). Looking at the results for
other categories, they seem to reflect the amount of
corpus data available for each category (Table 2),
with RES (Results) being the highest and OBJ (Ob-
jective) the lowest performing category with most

methods. Interestingly, the only method that per-
forms relatively well on OBJ is the supervised SVM.

The best method ASSVM outperforms other meth-
ods most clearly on METH (Method) category. Al-
though METH is a high frequency category (account-
ing for 18% of the corpus data) other methods tend
to confuse it with OBJ, presumably because a single
sentence may contain elements of both (e.g. scien-
tists may describe some of their method when de-
scribing the objective of the study).

Figure 2 shows the learning curve of different
methods (in terms of accuracy) when the percentage
of the labeled data (in the training set) ranges from 0
to 100%. ASSVM outperforms other methods, reach-
ing its best performance of 88% accuracy when us-
ing ∼40% of the labeled data. Indeed when using
33% of the labeled data, it performs already equally
well as fully-supervised SVM using 100% of the la-
beled data. The advantage of ASSVM over ASVM

(the second best method) is clear especially when
20-40% of the labeled data is used. SVM and TSVM

tend to perform quite similarly with each other when
more than 25% of the labeled data is used, but when
less data is available, SVM performs better. Look-
ing at the CRF-based methods, SSCRF outperforms
CRF in particular when 10-25% of the labeled data
is used. However, neither of them reaches the per-
formance level of SVM-based methods.

Figure 3 shows the area under the learning curves
(by the trapezoidal rule) at different intervals, which
gives a reasonable approximation to the overall per-
formance of different methods. The area under
ASSVM is the largest at each of the four intervals,
with a value of .08 at (0,10%], .07 at [10%,20%],
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.20 at [20%, 40%] and .50 at [40%,100%]. The dif-
ference between supervised and weakly-supervised
methods is more significant at (0, 20%] than at
[20%,100%].

4.3 Further analysis of the features

As explained in section 3.1, we employed in our
experiments a collection of features which had per-
formed well in previous supervised AZ experiments.
We conducted further analysis to investigate which
of these features are the most (and the least) useful
for weakly-supervised learning. We took our best
performing method ASSVM and conducted leave-
one-out analysis of the features with 10% of the la-
beled data. The results are shown in Table 4.

Table 4: Leaving one feature out results for ASSVM when
using 10% of the labeled data

Acc. F-score
MF BKG OBJ METH RES CON REL FUT

Location .73 .67 .67 .55 .62 .85 .65 - -
Word .80 .78 .87 .70 .74 .85 .72 - -
Bigram .81 .75 .83 .57 .71 .87 .78 .33 -
Verb .81 .79 .84 .77 .73 .87 .75 - -
VC .79 .75 .86 .62 .72 .84 .70 - -
POS .74 .70 .66 .65 .66 .82 .73 - -
GR .79 .75 .83 .67 .69 .84 .72 - -
Subj .80 .76 .87 .65 .73 .85 .72 - -
Obj .80 .78 .84 .75 .70 .85 .75 - -
Voice .78 .75 .88 .70 .71 .83 .62 - -
Φ .81 .76 .86 .56 .76 .88 .76 - -

MF: Macro F-score of the five high frequency categories:
BKG, OBJ, METH, RES, CON.
Φ: Employing all the features.

We can see that the Location feature is by far the
most useful feature for ASSVM. The performance
drops 8% in accuracy and .09 in F-score in the ab-
sence of this feature. Location is particularly im-
portant for BKG (which nearly always appears in the
same location: in the beginning of an abstract) and is
highly useful for METH and CON as well. Removing
POS has almost equally strong effect, in particular
on BKG and METH, suggesting that verb tense is par-
ticularly useful for distinguishing these categories.

Also Voice, Verb class and GR contribute to gen-
eral performance, especially to accuracy. Voice is
particularly important for CON, which differs from
other categories in the sense that it is marked by fre-
quent usage of active voice. Verb class is helpful for

METH, RES and CON while GR is helpful for all high
frequency categories.

Among the least helpful features are those which
suffer from sparse data problems, including e.g.
Word, Bi-gram, and Verb. They perform particularly
badly when applied to low frequency zones. How-
ever, this is not the case when using fully-supervised
methods (i.e. 100% of the labeled data), suggest-
ing that a good performance in fully supervised ex-
periments does not necessarily translate into a good
performance in weakly-supervised experiments, and
that careful feature analysis and selection is impor-
tant when aiming to optimize the performance when
learning from sparse data.

5 Discussion

In our experiments, the majority of weakly-
supervised methods outperformed their correspond-
ing supervised methods when using just 10% of
the labeled data. The SVM-based methods per-
formed better than the CRF-based ones (regardless of
whether they were weakly or fully supervised). Guo
et al. (2010) made a similar discovery when com-
paring fully supervised versions of SVM and CRF.

Our best performing weakly-supervised methods
were those based on active learning. Making a good
use of both labeled and unlabeled data, active learn-
ing combined with self-training (ASSVM) proved to
be the most useful method. Given 10% of the la-
beled data, ASSVM obtained an accuracy of 81% and
F-score of .76, outperforming the best supervised
method SVM with a statistically significant differ-
ence. It reached its top performance (88% accuracy)
when using 40% of the labeled data, and performed
equally well as fully supervised SVM (i.e. 100% of
the labeled data) when using just one third of the la-
beled data.

This result is in line with the results of many
other text classification works where active learn-
ing (alone or in combination with other techniques
such as self-training) has proved similarly useful,
e.g. (Lewis and Gale, 1994; Tong and Koller, 2002;
Brinker, 2006; Novak et al., 2006; Esuli and Sebas-
tiani, 2009; Yang et al., 2009).

While active learning iteratively explores the
unknown aspects of the unlabeled data, semi-
supervised learning attempts to make the best use
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of what it already knows about the data. In our ex-
periments, semi-supervised methods (TSVM and SS-
CRF) did not perform equally well as active learning
– TSVM even produced a lower accuracy than SVM

with the same amount of labeled data – although
these methods have gained success in related works.

We therefore looked into related works using
TSVM, e.g. (Chapelle and Zien, 2005), and discov-
ered that our dataset is much higher in dimensional-
ity than those employed in many other works. High
dimensional data is more sensitive, and therefore
fine-tuning with unlabeled data may cause a big de-
viation. We also looked into related works using
SSCRF, in particular the work of (Jiao et al., 2006)
who used the same SSCRF as the one we used in our
experiments. Jiao et al. (2006) employed a much
larger data set than we did – one including 5448 la-
beled instances (in 3 classes) and 5210-25145 unla-
beled instances. Given more labeled and unlabeled
data per class we might be able to obtain better per-
formance using SSCRF also on our task. However,
given the high cost of obtaining labeled data meth-
ods not needing it are preferable.

6 Conclusions and future work

Our experiments show that weakly-supervised
learning can be used to identify AZ in scientific
documents with good accuracy when only a limited
amount of labeled data is available. This is helpful
thinking of the real-world application and porting of
the approach to different tasks and domains. To the
best of our knowledge, no previous work has been
done on weakly-supervised learning of information
structure according to schemes of the type we have
focused on (Teufel and Moens, 2002; Mizuta et al.,
2006; Lin et al., 2006; Hirohata et al., 2008; Shatkay
et al., 2008; Liakata et al., 2010).

Recently, some work has been done on the related
task of classification of discourse relations in sci-
entific texts: (Hernault et al., 2011) used structural
learning (Ando and Zhang, 2005) for this task. They
obtained 30-60% accuracy on the RST Discourse
Treebank (including 41 relation types) when using
100-10000 labeled and 100000 unlabeled instances.
The accuracy was 20-60% when using the labeled
data only. However, although related, the task of
discourse relation classification differs substantially

from our task in that it focuses on local discourse re-
lations while our task focuses on the global structure
of the scientific document.

In the future, we plan to improve and extend this
work in several directions. First, the approach to
active learning could be improved in various ways.
The query strategy we employed (uncertainty sam-
pling) is a relatively straightforward method which
only considers the best estimate for each unlabeled
instance, disregarding other estimates that may con-
tain useful information. In the future, we plan to
experiment with more sophisticated strategies, e.g.
the margin sampling algorithm by (Scheffer et al.,
2001) and the query-by-committee (QBC) algorithm
by (Seung et al., 1992). In addition, there are al-
gorithms designed for reducing the redundancy in
queries which may be worth investigating (Hoi et al.,
2006).

Also, (Hoi et al., 2006) shows that Logistic Re-
gression (LR) outperforms SVM when used with ac-
tive learning, yielding higher F-score on the Reuters-
21578 data set (binary classification, 10,788 docu-
ments in total, 100 of them labeled). It would be
interesting to explore whether supervised methods
other than SVM are optimal for active learning when
applied to our task.

Secondly, we plan to investigate other semi-
supervised methods, for example, the Expectation-
Maximization (EM) algorithm. (Lanquillon, 2000)
has shown that EM SVM performs better than super-
vised and transductive SVM on a text classification
task when applied to the dataset of 20 Newsgroups
(20 classes, 4000 documents for testing, 10000 un-
labeled ones), yielding up to ∼10% higher accu-
racy when 200-5000 labeled documents are used for
training.

In addition, other combinations of weakly-
supervised methods might be worth looking into,
such as EM+active learning (McCallum and Nigam,
1998) and co-training+EM+active learning (Muslea
et al., 2002), which have proved promising in related
text classification works.

Besides looking for optimal ML strategies, we
plan to look for optimal features for the task. Our
feature analysis showed that not all the features
which had proved promising in fully supervised ex-
periments were equally promising when applied to
weakly-supervised learning from smaller data. We
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plan to look into ways of reducing the sparse data
problem in features, e.g. by classifying not only
verbs but also other word classes into semantically-
motivated categories.

One the key motivations for developing a weakly-
supervised approach is to facilitate easy porting of
schemes such as AZ to new tasks and domains. Re-
cent research shows that active learning in a target
domain can leverage information from a different
but related (source) domain (Rai et al., 2010). Mak-
ing use of existing annotated datasets in biology,
chemistry, computational linguistics and law (Teufel
and Moens, 2002; Mizuta et al., 2006; Hachey
and Grover, 2006; Teufel et al., 2009) we will ex-
plore optimal ways of combining weakly-supervised
learning with domain-adaptation.

The work presented in this paper has focused on
the abstracts annotated according to the AZ scheme.
In the future, we plan to investigate the usefulness
of weakly-supervised learning for identifying other
schemes of information structure, e.g. (Lin et al.,
2006; Hirohata et al., 2008; Shatkay et al., 2008;
Liakata et al., 2010), and not only in scientific ab-
stracts but also in full journal papers which typically
exemplify a larger set of scheme categories.

Finally, an important avenue of future research
is to evaluate the usefulness of weakly-supervised
identification of information structure for NLP tasks
such as summarization and information extraction
(Tbahriti et al., 2006; Ruch et al., 2007), and for
practical tasks such as manual review of scientific
papers for research purposes (Guo et al., 2010).
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