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Abstract
Solving word analogies became one of the most popular benchmarks for word embeddings on
the assumption that linear relations between word pairs (such as king:man :: woman:queen)
are indicative of the quality of the embedding. We question this assumption by showing that the
information not detected by linear offset may still be recoverable by a more sophisticated search
method, and thus is actually encoded in the embedding.

The general problem with linear offset is its sensitivity to the idiosyncrasies of individual words.
We show that simple averaging over multiple word pairs improves over the state-of-the-art. A
further improvement in accuracy (up to 30% for some embeddings and relations) is achieved
by combining cosine similarity with an estimation of the extent to which a candidate answer
belongs to the correct word class. In addition to this practical contribution, this work highlights
the problem of the interaction between word embeddings and analogy retrieval algorithms, and
its implications for the evaluation of word embeddings and the use of analogies in extrinsic tasks.

1 Introduction

Discovering analogical relations is currently one of the most popular benchmarks for word embeddings.
This trend started after (Mikolov et al., 2013b) showed that proportional analogies (a is to b as c is to d)
can be solved by finding the vector closest to the hypothetical vector calculated as c - a + b (e.g. king
- man + woman = queen). Many subsequent studies used this approach to evaluate the performance
of word embeddings with the Google test set (Mikolov et al., 2013a); the top current result is over 80%
accuracy (Pennington et al., 2014). The assumption is that a “good” word embedding encodes linguistic
relations in such a way that they are identifiable via linear vector offset (see section 2).

Analogies are interesting not only as a benchmark, but also potentially as a method for discovering
linguistic relations (Turney, 2008). They are already used for morphological analysis (Lavallée and
Langlais, 2010), word sense disambiguation (Federici et al., 1997), semantic search (Cohen et al., 2015),
and even for broad-range detection of both morphological and semantic features (Lepage and Goh, 2009).
However, Mikolov’s study was a demonstration of how word embeddings capture linguistic relations,
rather than a proposal of linear vector offset as a method for their discovery. It was later shown to not
work as well for a wider range of relations (Köper et al., 2015; Gladkova et al., 2016).

This study questions the underlying assumption that linguistic relations should translate to linear re-
lations between vectors rather than a more complex correspondence pattern. We show that relations
not detected by vector offset may be recoverable by other methods, and thus are actually encoded in
the embedding. The method we propose is based on learning the target relation from multiple word
pairs, since reliance on single word pair makes linear vector offset sensitive to word idiosyncrasies. A
naive average-based baseline outperforms the state-of-the-art. A more sophisticated machine-learning
algorithm achieves further improvement (up to 30% for some embeddings and linguistic relations) by
combining similarity to a source word vector (king) with the estimate of whether a candidate answer
(queen) belongs to the correct class of words (“woman”).

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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2 State of the Art: Analogical Reasoning Based on the Offset of Word Vectors

The starting point for this study is (Mikolov et al., 2013a), the first work to demonstrate the possibility of
capturing relations between words as the offset of their vectors. The answer to the question “a is to b as
c is to ?” is represented by hidden vector d, calculated as argmaxd∈V (sim(d, c− a+ b)). Here V is the
vocabulary (excluding word vectors a, b and c), and sim is a similarity measure, for which Mikolov and
most other researchers use angular distance between vectors u and v: sim(u, v) = cos(u, v) = u·v

||u||||v||
We will refer to this method as 3CosAdd. The intuition behind it is that the position of, e.g., vector man
relative to king should be roughly the same as the position of woman relative to queen. Vylomova et
al. (2016) use this method as a basis for learning lexical relations with spectral clustering and Support
Vector Machines (SVM).

An alternative method was introduced by Levy and Goldberg (2014) who propose to calculate the
hidden vector as argmaxd∈V (cos(d − c, b − a)). They report that this method produces more accurate
results for some categories. Its essence is that it accounts for d− c and b− a to share the same direction
and discards lengths of these vectors. We will refer to this method as PairDistance.

Linzen (2016) reports results of experiments with 6 more functions, including reversing the relation,
returning simply the nearest neighbour of the c word, and the word most similar to both b and c. None of
these functions outperformed 3CosAdd and PairDistance consistently. Reversal was beneficial for some
relations, but it is only applicable to symmetrical one-on-one relations. Crucially, when the words a, b
and c are not excluded from the set of possible candidates, the performance drops to zeroes, and for the
singular-plural noun category the correct answers are obtained with 70% accuracy as simply the nearest
neighbours of the c word.

3 The Alternative: Learning From Multiple Examples

3.1 Naive Approach

The vector offset approach relies on a single pair of words, which makes it sensitive to noise and word
idiosyncrasies, such as differences in polysemy networks. Consider the above king:queen example:
depending on the corpus, there may be more differences in their vectors than just masculinity/femininity.
Queen is also a musical group, and therefore appears in many contexts in which king does not appear.

The alternative is to learn the relation from a set of example pairs. The “naive” baseline would be a
simple average of the offset between every pair of vectors in the training set: argmaxd∈V (sim(d, c +

avg offset)), where avg offset =
∑m

i=0
ai

m −
∑n

i=0
bi

n and ai and bi represents words from source and
target classes. We refer to this method as 3CosAvg. To the best of our knowledge, this has not been
explored before - surprising as it is.

3.2 LRCos Method

We propose an alternative approach to discovering linguistic relations with analogies based on a set of
word pairs that have the same relation, such as the country:capital relation shown in Table 1:

Source Target
France Paris
Japan Tokyo
China Beijing

Table 1: Example analogy pairs set: capitals

In this set the right-hand-side and left-hand-side elements represent coherent groups of words - in this
example, “countries” and “capitals”. We shall refer to the left-hand-side of such analogies as the “source
class”, and to the right-hand-side - as “target class”. Given a set of such word pairs, the question “what
is related to France as Tokyo is related to Japan?” can be reformulated as “what word belongs to the
same class as Tokyo and is the closest to France?”
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We detect words belonging to the target class (e.g. “capitals”) with logistic regression1. Given a set of
word pairs (e.g. Japan:Tokyo), the available target words are used as positive samples, and source words,
along with random words from the dictionary, as negative samples. The number of random words and
other parameters of logistic regression such as regularization strength can affect the performance of the
classifier, but in our pilot tests no set of parameters yielded significant gains over the default choices. In
experiments reported below the number of random words was equal to the number of positive samples.
We used logistic regression implementation from Python linear_model.LogisticRegression
module from Python’s sklearn module version 0.17.1 with default parameters2.

The probability of a word being the correct answer for a given analogy is calculated by combining (in
this study, multiplying) the probability of this word belonging to the target class, and its similarity with
the vector a measured using angular distance. Theoretically this enables further optimization through
different weighting schemes, although our test did not show significant gains over simple multiplication.

Both set-based methods (3CosAvg and LRCos) were evaluated in exclude-n scheme. Given a set of
50 word pairs, n of them are excluded, and remaining are used for obtaining the “rule” of transfer (this
part differs by the method). Then each of the n pairs become the question, and the learned “rule” is used
to try to derive the answer. Larger n speeds up the computation and can be used for larger datasets, while
n=1 will maximize the number of training elements to obtain the “rule”. In this study we used n=2.

3.3 Filtering Vector Dimensions
Performance of LRCos could theoretically benefit from forcing the similarity metric to ignore irrelevant
features. Consider the task of identifying plural forms of nouns (e.g. phone:phones, banana:bananas).
The two linguistic classes (in this case singular and plural nouns) necessarily introduce some dissimilarity
between phone and phones.

Assuming that this dissimilarity is shared by all word pairs, we can learn which features are responsible
for it, and exclude them in the similarity estimation step. This should give an advantage to words from
the target class. Ideally, when the “plurality” features are excluded, the phones vector should be the
most similar to the phone vector. To implement this method we have additionally trained C-Support
Vector Classifier (sklearn.svm.SVC) with a linear kernel to discriminate between “left” and “right” words
and used complimentary values of the weights assigned to the features it learned to scale individual
dimensions. We will refer to this “filtered” variant of LRCos method as LRCosF.

4 Corpora and Word Embeddings

Word embeddings represent words in the vocabulary as vectors that can be derived directly from co-
occurrence counts (“explicit models”) or learned implicitly by neural nets (see (Erk, 2012) for general
overview of the field). It is currently debated whether explicit and implicit models are conceptually
different (Levy and Goldberg, 2014), or whether the latter have an advantage over the former (Baroni et
al., 2014). To contribute to the ongoing debate, this work explores both types of models.

The source corpus combines an English Wikipedia snapshot from July 2015 (1.8B tokens), Araneum
Anglicum Maius (1.2B) (Benko, 2014) and ukWaC (2B) (Baroni et al., 2009) (uncased, words occurring
less than 100 times were discarded). The resulting vocabulary size is 301,949 words.

The SVD-based explicit model is built upon co-occurrence matrix weighted by Positive Pointwise Mu-
tual Information (PPMI, Church and Hanks (1990)). The co-occurrence matrix was computed using the
co-occurrence extraction kernel by (Drozd et al., 2015) with a window size of 8. Singular Value Decom-
position (SVD) transformation was used to obtain low-rank approximation of the sparse co-occurrence
matrix. SVD factorizes m× n real or complex matrix M in a form M = UΣV ∗ (Golub and Van Loan,
1996), and embeddings can be obtained as UΣ. Σ is a diagonal matrix the elements of which reflect how
much of a variance of original data is captured in a given dimension. We used the technique by (Caron,
2001) of rising Σ matrix element-wise to the power of a where 0 < a ≤ 1 to give a boost to dimensions

1We tried several other classification algorithms such as SVM with linear, polynomial and radial basis function kernels, but
neither of them yielded higher classification accuracy, and they also were more computationally expensive. Building a classifier
directly from the set of vector offsets of all word pairs was also not successful.

2Source code and additional materials are available at http://vsm.blackbird.pw
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with smaller variance, with a =0.1 for 300-dimensional embeddings and a=0.6 for the rest. We have
used embeddings of size 300 and 1000 for comparison with GloVe and Skip-Gram models, and sizes
100-1200 for studying the dimensionality effect. Finally, we have normalized each embedding vector
individually, as we have found that it increases the performance of SVD-based embeddings.

As representatives of implicit models we used GloVe and Skip-Gram. The GloVe model was trained
with the original software by (Pennington et al., 2014) with 300 dimensions, window size 8, 20 iterations,
parameters xmax= 100, a = 3/4. Skip-Gram embeddings were trained with original software by Mikolov
(Mikolov et al., 2013a) in skip-gram mode, with windows size 8, 25 negative samples, 5 iterations,
“sample” parameter (for down-sampling of frequent words) equal to 1e-4. It is also worth noting that
co-occurrences for the SVD model were collected with respect to sentence boundaries, while GloVe and
Skip-Gram models disregard them.

The performance of word embeddings can be drastically affected by their parameters (Levy et al.,
2015; Lai et al., 2015), which prompts parameter searching for different tasks. However, accuracy of
solving word analogies also varies immensely for different linguistic relations (Gladkova et al., 2016).
Optimizing for “average accuracy” on a diverse set of relations may not be meaningful, as it does not
necessarily guarantee better performance on a particular relation. Therefore we did not attempt such
parameter search for our models. However, in section 5.1 we will test our embeddings on the widely used
Google analogy test to show that they are generally on the par with the previously reported results (Levy
et al., 2015; Pennington et al., 2014), and not victims of some particularly unfortunate configuration.

5 Evaluation

5.1 The Google Test Set
3CosAdd is widely used for benchmarking word embeddings on the test known as the Google test set
(Mikolov et al., 2013a). It contains 14 categories with 20-70 unique example pairs per category, which
are combined in all possible ways to yield 8,869 semantic and 10,675 syntactic questions. The state-of-
the-art on this test has over 65% average accuracy: 67.8% for DRRS (Garten et al., 2015), 70.64% for
GCeWE (Zhou et al., 2015), and 75.6% for GloVe (Pennington et al., 2014).

The average accuracy for 3 models with 4 analogy detection methods is presented in table 2. We used
logistic regression as a classification algorithm in the “exclude one” scheme, where the classifier is re-
trained each time on all target class words excluding the one from the pair in question. Table 2 shows that
LRCos clearly outperforms 3CosAdd and 3CosAvg, although for all methods accuracy varies between
relations and models.

We compute both Mean all (the number of correct answers divided by the total number of questions
in the whole dataset) and Mean rel (the average accuracy scores for all categories), and, for the latter,
also SD (standard deviation) between categories. It is Mean all that is typically reported (Mikolov et al.,
2013a; Pennington et al., 2014), but table 2 suggests that Mean all tends to be higher than Mean rel. We
attribute this to the fact that the Google test set is not balanced (20-70 unique pairs per category), and the
more successful country:capital relations constitute the bulk of the semantic questions. Mean all also can
not represent the variation between categories, which in our experiments is between 17-28%.

Method
3CosAdd PairDistance 3CosAvg LRCos

Mean all Mean rel SD Mean all Mean rel SD Mean all Mean rel SD Mean all Mean rel SD
SVD300 50.6% 45.1% 24% 22.7% 16.1% 17% 54.8% 51.2% 26% 68.2% 68.1% 23%
SVD1000 58.1% 49.4% 25% 23.6% 22.3% 17% 59.7% 54.0% 27% 74.6% 72.6% 21%
GloVe 79.6% 67.8% 26% 33.5% 26.9% 22% 79.1% 74.2% 28% 73.7% 70.9% 24%
Skip-Gram 75.1% 66.6% 23% 28.6% 24.2% 21.6% 80.3% 78.3% 17% 79.8% 78.0% 17%

Table 2: Average accuracy in the total dataset (Mean all), between 14 categories (Mean rel), and the
standard deviation (SD) between categories in the Google test set.

Table 2 highlights the interaction between the method of discovering analogies and the word embed-
ding itself. The results of GloVe and Skip-Gram improve with LRCos as compared to 3CosAdd, but the
simple average 3CosAvg works even slightly better for them. However, SVD gets an over 15% boost
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from LRCos, but not from 3CosAvg. This suggests that (a) the information not detected by 3CosAdd
was actually contained in the SVD model, and (b) evaluating different embeddings with the same method
might not be as meaningful as is commonly believed. Perhaps a better question to ask is why these em-
beddings behave so differently, and what does it tell us about them and the methods used.

5.2 The Bigger Analogy Test Set
The above results suggest that performance on the Google test set varies significantly between categories,
and it was shown that some relations are in principle not detected successfully with 3CosAdd (Köper et
al., 2015). Gladkova et al. (2016) developed the BATS analogy test set that is balanced across 4 types of
linguistic relations (grammatical inflections, word-formation, lexicographical and world-knowledge rela-
tions), with 50 word pairs per category and 10 categories of each type (overall 2000 unique word pairs)3.
This test presents a bigger challenge: the performance of GloVe is reported to drop from 80.4% on the
Google test set to 28.5% on BATS due to difficulties with derivational and lexicographic categories.

Table 3 and figure 1 show that LRCos follows this overall trend, achieving only 47.7% average ac-
curacy on BATS with Skip-Gram, the best-performing embedding. But it still outperforms the others:
the best average for 3CosAdd is 28.1% (Glove), 7.5% for PairDistance (GloVe), 34.4% for 3CosAvg
(GloVe). LRCosF is only slightly behind (47.2% for LRCosF on Skip-Gram).

Compared to 3CosAdd LRCos achieves up to 25% boost on encyclopedic relations (SVD model
with 1000 dimensions), up to 8% boost on lexicographic relations (SVD), and, most significantly, up
to 34% boost on the difficult derivational relations (for Skip-Gram). For inflectional morphology LR-
CosF yielded even better results (up to 28% for SVD).

Method
Encyclopedia Lexicography Inflectional Morphology Derivational Morphology

SVD GloVe Skip-Gram SVD GloVe Skip-Gram SVD GloVe Skip-Gram SVD GloVe Skip-Gram
PairDistance 11.8% 13.6% 12.4% 1.1% 1.0% 0.8% 12.8% 14.5% 14.9% 1.9% 0.8% 0.8%
3CosAdd 18.5% 31.5% 26.5% 10.1% 10.9% 9.1% 44.0% 59.9% 61.0% 9.8% 10.2% 11.2%
3CosAvg 30.0% 44.8% 34.6% 12.2% 13.0% 9.6% 51.2% 68.8% 69.8 13.0% 11.2% 15.2%
LRCos 39.3% 40.6% 43.6% 18.0% 16.8% 15.4% 65.2% 74.6% 87.2% 30.4% 17.0% 45.6%
LRCosF 43.7% 40.8% 42.6% 16.4% 17.6% 14.4% 72.2% 75.0% 87.4% 30.0% 17.1% 44.2%

Table 3: Average accuracy per relation type in BATS per method for SVD1000, GloVe and w2v models.

Figure 1 demonstrates variation in performance of 3CosAdd, 3CosAvg and LRCos on GloVe and SVD
models by individual categories of BATS. LRCos almost always performs the best, but the pattern of
results for GloVe and SVD is a little different. SVD did worse on inflectional morphology on SVD than
on GloVe, so it benefitted more from LRCos - but it is interesting that (a) the benefit for the overall better-
performing GloVe was overall smaller, and (b) LRCos almost never improves the results for categories
where 3CosAdd already achieved near 80% accuracy. This suggests that there might be a certain limit
on how accurate we can get on the test, at least for a given corpus.

Table 3 shows that different methods for discovering analogies do not perform uniformly across the
whole set or different embeddings. LRCos and LRCosF are “preferred” by different types of relations
(although the gap between them is not so large), and in one case the baseline actually performs better.

One of the possible explanations for why LRCos yields significant improvement for derivational mor-
phology, but not for lexicographic relations, is that LRCos relies on the notion of “target word class”.
In case of suffixes and prefixes such a target class is relatively coherent (“all words with the suffix -
ness”), but for, e.g., synonyms, BATS includes different parts of speech (e.g. scream:cry, car:automobile,
loyal:faithful). In this case there is no clear target class, and LRCos should actually be at a disadvantage
compared to 3CosAdd (although it still improves results for some of the more coherent categories).

5.3 Russian Morphological Categories
As an additional task we compiled a small set consisting of 6 Russian noun forms: nominative case
paired with instrumental, dative and prepositional cases in singular and plural form, such as yaponets :
yapontsem (“a Japanese”: “by a Japanese”). As in BATS, each category contains 50 unique word pairs.

3BATS dataset can be downloaded from http://vsm.blackbird.pw/bats
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Encyclopedic relations

E01: geography: capitals (Athens:Greece) 
E02: geography: languages (Peru:Spanish) 
E03: geography: UK counties (York:Yorkshire) 
E04: people: nationality (Lincoln:American) 
E05: people: occupation (Lincoln:president)
E06: animals: the young (cat:kitten)
E07: animals: sounds (dog:bark)
E08: animals: shelter (fox:den)
E09: thing:color (blood:red) 
E10: male:female (actor:actress) 

Lexicographic relations

L01: hypernyms: animals (turtle:reptile)  
L02: hypernyms: miscellaneous (peach:fruit)
L03: hyponyms: miscellaneous (color:white)
L04: meronyms: substance (sea:water) 
L05: meronyms: member (player:team)
L06: meronyms: part-whole (car:engine)
L07: synonyms: intensity (cry:scream) 
L08: synonyms: exact (sofa:couch)
L09: antonyms: gradable (clean:dirty) 
L10: antonyms: opposites (up:down) 

Inflectional Morphology 

I01: noun sg:pl (regular) (student:students) 
I02: noun sg:pl (irregular) (wife:wives) 
I03: adjective: comparative (strong:stronger) 
I04: adjective: superlative (strong:strongest) 
I05: infinitive: 3Ps.Sg (follow:follows) 
I06: infinitive: participle (follow:following) 
I07: infinitive: past (follow:followed)
I08: participle: 3Ps.Sg (following:follows)
I09: participle: past (following:followed)
I10: 3Ps.Sg : past (follows:followed) 

Derivational Morphology

D01: noun+ness (home:homeness) 
D02: un+adjective (able:unable)
D03: adjective+ly (usual:usually)
D04: over+adjective (used:overused) 
D05: adjective+ness (mad:madness) 
D06: re+verb (create:recreate)
D07: verb+able (edit:editable) 
D08: verb+er (bake:baker) 
D09: verb+tion (continue:continuation)
D10: verb+ment (argue:argument) 
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Figure 1: Performance of 3CosAdd, 3CosAvg and LRCos methods on BATS categories.

The overall accuracy on the SVD embedding with 1000 dimensions is 18.0% with 3CosAdd
method, 19.2% with 3CosAvg and 43.1% with LRCos. For GloVe the results are 28.1%, 34.4% and
39.4%, respectively.
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While this is not a comprehensive test like BATS, it is sufficient to see if the different methods of dis-
covering analogical relations are equally successful on morphologically complex and simple languages.
The problem with the former is that there are many more word forms per lemma (e.g., the English text of
Pride and Prejudice contains 7266 tokens for 6576 lemmas, and its Russian translation – 17903 tokens
for 7715 lemmas, i.e. almost three times more). For word-level word embeddings this means that there
are more vectors from the same volume of text, that they are built with less information, and that there are
more vectors that are very similar (which complicates the task for a method relying on cosine similarity).
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Figure 2: Accuracy of LRCos, 3CosAdd and
3CosAvg on Russian noun case forms.

For this test we built an SVD-based model
from Araneum Russicum Maximum (Benko and
Zakharov, 2016) - a web-corpus containing
13.4B tokens. The parameters are as follows:
1000 dimensions, window size 3, with PMI-
weighted co-occurrence matrix and Σ raised to
the power a = 1.

Fig. 2 shows that morphological complexity
does increase difficulty for analogical reasoning
with word embeddings. In English 3CosAdd
scores over 50% on many morphological cate-
gories, but in Russian cases its performance is
in the 20% range. LRCos performs significantly
better, although not always on the par with En-
glish. Further research is needed to tell why,
e.g., Russian prepositional case appears to be
more difficult than instrumental.

6 Exploring LRCos

6.1 Effect of Training Set Size

Any method relying on supervised learning is only useful when there is sufficient data for learning. To
use a method such as LRCos for practical analogical reasoning tasks we need to know how much data
we would have to provide for each relation.
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Figure 3: Effect of training set size.

We performed such an evaluation with our
Russian morphology data, creating sets that con-
tained up to a thousand word pairs. To estimate
the optimal number of training samples we re-
peated the experiment multiple times, each time
randomly selecting a subset of word pairs and
observing how its size affects performance.

Two sample categories are shown in Figure
3 (LRCos and 3CosAvg methods). Our exper-
iments suggest that accuracy for Russian mor-
phological categories for both methods saturates
at 50 pairs on average. While more tests are
needed to determine if this number may be dif-
ferent for other types of relations or for other

languages, such a range is feasible for LRCos to be used in practical tasks such as morphological parsing.

6.2 Effect of Vector Size

Our experiments suggest that although higher dimensionality implies more information about words
being captured, it does not necessarily leads to better accuracy with the 3CosAdd method (a similar
effect was observed by Cai et al. (2015) for similarity task). Some categories benefit slightly from
higher dimensions, but for many there is no improvement, or there is even a slight degradation, while for
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3CosAdd performance continues to rise. Data for four example categories are shown in Figure 4. One
possible explanation for this phenomenon is that once the dimensions corresponding to the core aspects
of a particular analogical relation are included in the vectors, adding more dimensions increases noise.

LRCos is not completely free from this negative effect, but it suffers less as the effect is mitigated by
the fact that regression can assign near-zero weights to the dimensions which are not responsible for the
target analogical relation. Thus algorithm performance continues to grow with larger vector sizes.
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Figure 4: Effect of vector dimensionality on
3CosAdd (dashed lines) and LRCos (solid lines)
methods

This result suggests that there is potential for
LRCos to achieve even better results with com-
bined models (Garten et al., 2015; Fried and
Duh, 2014). For example, different window
sizes are believed to be more beneficial for dif-
ferent tasks: larger windows for topical rela-
tions, smaller windows for morphological rela-
tions, as shown in (Lebret and Collobert, 2015).
This would prevent any one model from achiev-
ing top performance on all tasks. However, we
can have, e.g., a model that combines window
10 and window 2, and the extra dimensions will
not become noise for LRCos method.

6.3 Effect of a Parameter

As described in section 4, we raise the elements of Σ matrix of factorization to the power of a to control
the contribution of different singular vectors. If a is equal to 1, then each column in the transformed
matrix is scaled proportionally to the variance in the original data it represents. Smaller values of a es-
sentially boost the features which were less pronounced in the corpus in terms of co-occurrence patterns.
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Figure 5: Effect of changing the value of α

Figure 5 illustrates the impact of changing a
for several example relations. Similarly to other
model parameters, there is no value that provides
the best results for all cases. The average ac-
curacy is affected slightly, but certain relations
may experience up to a two times decrease or
improvement. This suggests that treating indi-
vidual dimensions of embeddings independently
could yield better results. While experimenting
with the size of embeddings suggests that the
LRCos method is better at selectively choosing
useful dimensions for the embeddings, there is
still a lot of room for improvement.

7 Further Ways to Improve: Mistakes of 3CosAdd and LRCos

Since LRCos relies on both cosine similarity and degree to which the hypothetical answer belongs to the
target class of words, it could be expected to yield a different pattern of mispredictions than 3CosAdd. To
investigate the differences in the output of the two methods we manually annotated the incorrect answers
by 3CosAdd and LRCos on 4 BATS categories: E05 (Lincoln:president), L05 (parishioner:parish), M05
(follow:follows) and WF05 (create:recreate). The evaluation was done with the SVD model at 1000
dimensions, window size 3. The results of this evaluation are summarized in table 4.

First of all, for both methods the ratio of “random” answers is insignificant; most of the wrong answers
are morphologically, derivationally, collocationally, or semantically related to one or more of the source
words – as can be expected for methods relying on cosine similarity. The problem, traditionally, is
distinguishing between different types of relations.

When proposing the 3CosAdd method, Mikolov et al. (2013b) exclude the three source words from
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Type of answer Example E05 name:occupation L05 member: group I05 infinitive: 3p.Sg D05 re+verb
3CosAdd LRCos 3CosAdd LRCos 3CosAdd LRCos 3CosAdd LRCos

Correct answer hear: hears :: seem:
seems

10.62 52.00 0.97 4.08 35.1 78.00 26.24 48.00

Acceptable
answer

plato:philosopher ::
hegel:?theorist

1.42 6.00 1.75 6.12 - - - -

Morphological
relation

define:redefine ::
imagine: *imagining

3.84 - 44.28 56.00 43.39 - 23.19 -

Misspelling of a
source word

confirm:reconfirm ::
acquire:*aquire

- - - 2.04 0.08 - 2.20 2.00

Derivational
relation

hear: hears :: seem:
*seemingly

0.94 - 1.25 - 0.82 - 1.55 2.00

Lexicographical
relation

include: includes::
appear: *seems

61.6 22.00 27.69 4.08 4.53 4.00 14.04 8.00

Frame-semantic
relation

sit: resit :: learn:
*coursework

15.03 14.00 20.13 24.49 9.63 10.00 13.11 36.00

Collocate of a
source word

protect: protects::
learn: *basics

- - 1.99 4.08 3.35 2.00 0.49 -

Mistake due to
polysemy

parishioner: parish ::
relative: *density

1.67 - 8.49 4.08 0.94 - - -

Partially correct
answer

protect: protects ::
maintain: *ensures

- - 0.97 10.20 6.82 18.00 13.71 28.00

Unrelated word send: resend :: engage:
*categorise

2.37 4.00 2.63 - 1.39 4.00 8.28 2.00

* Several relations may be applicable to each case, so the sum for each column does not necessarily add up to 100%.

Table 4: Types of mistakes for 3CosAdd and LRCos methods in different linguistic relations.

the set of possible answers, because otherwise one of them is too likely to turn up to be the closest to the
hypothetical vector. But even if they are excluded, these source vectors can still “misdirect” the method.
The fact that in L05, I05, and D05 the most frequent type of mistakes are the wrong morphological
forms of a source word is consistent with the finding of Linzen (2016) that in the noun plural category
of the Google test set the nearest neighbor of the c word provides the correct answer in 70% of cases.
The plurals-as-nearest-neighbors were the pitfall for our L05 member:group category, where the analogy
student:class :: bird:?(flock) would yield the answer birds. Likewise, with the verbs in I05 and D05 we
were getting many participles with -ing ending: arrange:rearrange::grow:*growing (expected: regrow),
create:creates::accept:*accepting (expected: accepts).

Consider now the E05 category that seems to break the pattern of morphologically-related nearest-
neighbor: here the most mistakes are “lexicographic’. E05 category has analogies such as aristo-
tle:philosopher::bach:?composer. The typical mistake is a co-hyponym of the a or (usually) c word,
i.e. another composer in this case. This is also explained by the fact that for the names of famous people
their nearest neighbors frequently happen to be co-hyponyms: in our SVD model the nearest neighbors
of Bach are Haydn and Schubert, and in GloVe - Handel and Beethoven. This means that in all the
categories the basic source of mistakes is the same indiscriminateness of cosine similarity.

Unfortunately, this means that word analogies fail to provide sufficient “context” to words: ideally,
king:queen :: man:woman and king:kings :: queen:queens should profile sufficiently different aspects of
the king vector to avoid the nearest-neighbor trap. However, it does not seem to work this way. This is
particularly clear in mistakes resulting from polysemy of one of the source words. For example, in L05
we had: crow:murder::fish:*killing (expected: school), lion:pride::bird:*ambition (expected: flock).

In E05, D05 and I05 LRCos significantly improves over 3CosAdd by reducing this nearest-neighbor
kind of mistake, but it is telling that this improvement comes with the increase of partially-correct an-
swers: the model comes up with the correct target feature in an incorrect word, e.g. ask asks + happen
= realizes (expected: *happens). Such mistakes suggest that the contribution of classifier and cosine
similarity could differ for different words, although it is not clear how to determine them dynamically.

Another observation from our data is that for both methods the margin of error is very thin. For
example, in the E05 category LRCos gives Depp:screenwriter a total score of 0.36, and this incorrect
answer beats the correct answer Depp:actor that is ranked 0.35. Average accuracy would be much higher
if we allowed the answers to be in the top five nearest neighbors, although this, of course, brings up the
problem of where analogies could be used in practice, and what level of precision that would require.
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8 Discussion: Embeddings vs Methods

LRCos offers a significant boost in accuracy for detecting analogical relations over the most widely-used
3CosAdd method, including derivational relations where the latter does not perform well. However,
LRCos is by no means perfect, and there is room for further improvement, especially with respect to
lexicographic relations. This includes algorithms aimed at searching for complex patterns of correspon-
dences between vectors rather than simple similarity. A different (and potentially more fruitful) approach
is to investigate whether the target relations are at all reflected in the distributional properties of words.

Aside from the practical result for non-lexicographic relations, this work also brings up a theoretical
question. We have shown that different methods of detecting analogies provide different results on
different embeddings, and this means that low performance of a word embedding with, e.g., 3CosAdd
method, does not prove that the embedding does not capture certain linguistic relations - only that they
are not detectable with this particular method. This brings into question the validity of analogy detection
with 3CosAdd as a benchmark for word embeddings, as it is frequently used (Pennington et al., 2014;
Garten et al., 2015; Cui et al., 2014).

It could be argued that embeddings could be judged “good” as in “easy to work with”; in this sense
a “good” embedding is an embedding that yields correct answers with simple rather than complex ex-
traction methods. However, what is good for practical applications is not necessarily the same as what
is good for a benchmark. In this case with analogies, 3CosAdd is at disadvantage with embeddings that
encode a lot of extra (but useful) information in dimensions that are irrelevant to a particular relation,
and thus misleads 3CosAdd. On the other hand, it could be argued that machine-learning-based methods
should not be used for benchmarking because they could learn to ignore noise too well.

9 Conclusion

We presented LRCos, a method of analogical reasoning that is based on supervised learning from a
group of examples. LRCos significantly outperforms the popular 3CosAdd method (based on offset
for individual word pairs) on both the Google and BATS test sets, although the gain varies between
embeddings and relation types. Importantly, LRCos achieves high accuracy in two areas where 3CosAdd
mostly failed: word-formation in English and grammar in Russian, a morphologically rich language.
Unlike 3CosAdd, LRCos is less sensitive to idiosyncrasies of individual word pairs, and does not suffer
from higher vector dimensionality.

We compared 5 analogical reasoning methods on 40 types of linguistic relations with two word em-
beddings: explicit SVD model and neural-net-based GloVe. Both models yielded overall similar patterns
of performance with different methods, offering further evidence for conceptual similarity of explicit and
implicit word embeddings.

This work also makes a theoretical contribution in demonstrating the interaction between word em-
beddings, types of analogies, and different types of search algorithms: with LRCos our SVD-based
model approaches the state-of-the-art performance for GloVe and Skip-Gram. This suggests that the
information about linguistic relations from the test set was actually encoded in the SVD-based embed-
ding, possibly in a different way. In that case we need to decide whether failure to detect a relation with
3CosAdd method actually indicates inferiority of a word embedding, and whether a “good” embedding
should encode different kinds of relations in the same way - as the Google test set in conjunction with
3CosAdd is still one of the most popular benchmarks.
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