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Abstract

CLIP is a foundational model that bridges
images and text, widely adopted as a key
component in numerous vision-language mod-
els. However, the lack of large-scale open
Japanese image-text pairs poses a significant
barrier to the development of Japanese vision-
language models. In this study, we constructed
a Japanese image-text pair dataset with 1.5 bil-
lion examples using machine translation with
open-weight LLMs and pre-trained Japanese
CLIP models on the dataset. The performance
of the pre-trained models was evaluated across
seven benchmark datasets, achieving competi-
tive average scores compared to models of sim-
ilar size without the need for extensive data
curation. However, the results also revealed
relatively low performance on tasks specific to
Japanese culture, highlighting the limitations
of translation-based approaches in capturing
cultural nuances. Our dataset1, models2, and
code3 are publicly available.

1 Introduction

Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021) has emerged as a
powerful framework for aligning images and text
within a shared embedding space. By leveraging
contrastive learning, CLIP has demonstrated re-
markable capability in bridging visual and textual
modalities, thereby being adopted in numerous
multimodal models such as visual-language
models and diffusion models (Liu et al., 2023; Lin
et al., 2024; Ramesh et al., 2022).

While the size and quality of the pre-training
dataset is critical for CLIP’s performance (Cherti
et al., 2023; Xu et al., 2024), the availability of

1https://huggingface.co/llm-jp/
relaion2B-en-research-safe-japanese-translation

2https://huggingface.co/llm-jp/
llm-jp-clip-vit-base-patch16,
https://huggingface.co/llm-jp/llm-jp-clip-vit-large-patch14

3https://github.com/llm-jp/clip-eval

large-scale, high-quality Japanese image-text pairs
remains limited, posing challenges for advanc-
ing research of Japanese vision-language mod-
els. As of this writing, the largest publicly avail-
able Japanese dataset is the Japanese subset of
ReLAION-5B (Schuhmann et al., 2022), compris-
ing approximately 120 million image-text pairs.
This size is smaller than the 2.1 billion image-text
pairs available in the English subset of ReLAION-
5B, highlighting a gap in data size. Moreover,
while the English subset is filtered using OpenAI’s
CLIP, which has high performance, the Japanese
subset is filtered using mCLIP (Chen et al., 2023a),
where the filtering quality may be suboptimal due
to mCLIP’s lower performance on Japanese.

To construct large-scale Japanese image-text
pair datasets, there are two primary approaches:
web crawling using resources such as Common
Crawl (Schuhmann et al., 2022) and translating ex-
isting English datasets. However, web crawling
presents challenges due to the relatively small pro-
portion of Japanese web pages in Common Crawl,
which account for only about 5% compared to the
about 43% occupied by English pages4, indicating
a nearly ninefold disparity. Consequently, machine
translation emerges as a viable alternative.

In this paper, we constructed a dataset of 1.5
billion Japanese image-text pairs by leveraging
open-weight LLMs for translation. We also pre-
trained Japanese CLIP models using the con-
structed dataset to assess its effectiveness. Our
experimental evaluations demonstrate that our mod-
els achieve competitive performance across vari-
ous benchmark datasets, compared to other mod-
els of similar size. However, the performance on
tasks related to Japanese culture was relatively low,
highlighting the limitations of translation-based ap-
proaches in effectively enhancing understanding of
Japanese culture.

4https://commoncrawl.github.io/cc-crawl-statistics
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English Caption Japanese Caption
Iron Man Movie Poster アイアンマン映画ポスター

Unique 14k Gold Yellow and Blue Diamond En-
gagement Ring 2.64ct.

ユニークな14金イエローゴールドとブルー
ダイヤの婚約指輪 2.64ct.

Hot Chocolate With Marshmallows, Warm Hap-
piness To Soon Follow

マシュマロ入りホットチョコレート、まも
なく幸せが訪れる。

Herd of cows on alpine pasture among mountains
in Alps, northern Italy. Stock Photo

アルプス北部、イタリアのアルプス山脈の
山々の中にある高地草地に群れでいる牛の
写真

Table 1: Examples of original English captions of ReLAION-5B and their Japanese translations by gemma.

2 Constructing a Japanese Image-Text
Pair Dataset

To construct a Japanese image-text pair dataset,
we translated the captions of the English subset
of ReLAION-5B5 into Japanese using gemma-
2-9b-it6, a high-performance open-weight LLM.
ReLAION-5B is a refined version of LAION-
5B (Schuhmann et al., 2022), with Child Sexual
Abuse Material (CSAM) removed. It is a large-
scale dataset of image-text pairs, where images and
their corresponding IMG-alt text are collected from
Common Crawl and filtered using existing CLIP
models. The dataset is divided into three subsets:
English, multilingual, and no-language.

To enable the rapid translation of large datasets,
we developed text2dataset7, a translation
tool for LLMs. This tool utilizes vLLM (Kwon
et al., 2023), a fast LLM inference library, to effi-
ciently translate large-scale English datasets into
Japanese.

Prompt To translate text using LLMs, it is crucial
to provide both the text for translation and a clear
instruction prompt (Zhu et al., 2024). In this study,
we used the following prompt:

You are an excellent English-
Japanese translator. Please
translate the following sentence
into Japanese.\n You must output
only the translation.\n Sentence
:{passage}\n Translation:

The {passage} is replaced with the source
text for translation. The LLM is then expected to
generate the translated text based on this prompt.

5https://laion.ai/blog/relaion-5b
6https://huggingface.co/google/gemma-2-9b-it
7https://github.com/llm-jp/text2dataset

Translation Results We translated the entire cap-
tions of the English subset of ReLAION-5B, con-
sisting of 2,097,693,557 examples. This process
was completed in about 9 days using 32 NVIDIA
A100 40GB GPUs.

Table 1 shows translated examples. It is ev-
ident that the English captions were success-
fully translated into Japanese. However, a man-
ual check of the first 10,000 examples revealed
some translation issues. Despite explicitly spec-
ifying the target language in the prompt, there
were examples where the translation was incor-
rectly performed into Chinese or Korean, which
accounted for about 1% of the cases. Addi-
tionally, a phenomenon specific to instruction-
tuned LLMs was observed: for example, an
expression like “Please let me know if
you have any questions.” was added at
the end of the translated text, which accounts for
about 0.1% of the examples. These issues could
be improved by utilizing higher-performance trans-
lation LLMs or applying post-processing to the
translation results. We leave them as future work.

We used img2dataset (Beaumont, 2021) to
download images. Due to issues such as broken
URL links or preprocessing failures, the success
rate of downloading was approximately 70%, re-
sulting in a final dataset of 1,451,957,221 Japanese
image-text pairs.

3 Training CLIP

We describe the training settings of llm-jp-clip-ViT-
B/16 as our default model in this section.

We pre-trained CLIP models using the con-
structed dataset. In this study, we used ViT-
B/16 (Dosovitskiy et al., 2021) as the image en-
coder and RoBERTaBASE (Liu et al., 2019) as the
text encoder. The output dimension of each en-
coder was set to 512, and both were trained from
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English Template Japanese Template
a photo of the {} {}の写真
a sketch of a {} {}のスケッチ

a photo of the cool {} かっこいい{}の写真

Table 2: Examples of prompt template.

Dataset Examples Classes Language
Image Classification

ImageNet 50,000 1,000 En
Recruit 7,654 161 Ja
CIFAR10 10,000 10 En
CIFAR100 10,000 100 En
Food101 25,250 101 En
Caltech101 8,677 101 En

Image-Text Retrieval
XM3600 3,600 – En, Ja, etc

Table 3: Details of evaluation datasets.

scratch. We used the llm-jp-tokenizer8 as
the base tokenizer and applied custom modifica-
tions tailored for CLIP. The text encoder’s max-
imum context length was set to 76 tokens. The
image resolution was set to 224 × 224.

For optimization, we used AdamW with hyper-
parameters of β1 = 0.9, β2 = 0.98, and ϵ = 10−6.
Learning rate scheduling consisted of 2,000 steps
of linear warmup followed by cosine decay, with a
peak learning rate of 5.0 × 10−4 and a minimum
learning rate of 0.0. We trained the model for 9
epochs, processing a total of 13 billion examples.

We employed the contrastive loss function pro-
posed by Radford et al. (2021). The batch size was
set to 8,192, with gradient accumulation over four
steps. Notably, the accumulated loss differs from
the contrastive loss computed directly with a batch
size of 32,768.

We used OpenCLIP (Ilharco et al., 2021) as the
training framework and trained the model on 16
NVIDIA H100 80GB GPUs, requiring two weeks
for training.

4 Evaluation

We evaluated the performance of our models by
comparing it with Japanese and multilingual base-
line CLIP models on zero-shot image classification
and image-text retrieval tasks.

8https://github.com/llm-jp/llm-jp-tokenizer

4.1 Evaluation Settings

Zero-shot Image Classification We followed the
evaluation methodology proposed by Radford et al.
(2021) for zero-shot image classification. First,
we convert class labels corresponding to the tar-
get images into natural language sentences using
prompt templates. For example, a label will be in-
serted into the placeholder {label} in a template
“a photo of a {label}” to convert the la-
bel into a natural sentence. Next, we compute the
similarity scores between images and texts, and
the label with the highest similarity is selected as
the predicted class for the image. In this study,
we used Japanese prompt templates provided by
japanese-clip (Shing et al., 2022). Table 2
shows examples of the Japanese templates used
in this experiment. For evaluation, we used accu-
racy@1 as the metric.

Zero-shot Image-Text Retrieval Image-text re-
trieval involves two main tasks: text-to-image re-
trieval and image-to-text retrieval. In text-to-image
retrieval, the goal is to find the most relevant im-
ages based on a textual query by computing the
similarity between the text embedding and the em-
beddings of all candidate images, then ranking the
images accordingly. In contrast, image-to-text re-
trieval aims to retrieve the most relevant textual
descriptions for a given image query. For evalua-
tion, we used recall@1 as the metric.

Evaluation Datasets Table 3 provides details of
the evaluation datasets used in our experiments.

In zero-shot image classification task, we
used ImageNet-1K (Deng et al., 2009), Re-
cruit9, CIFAR10 (Krizhevsky, 2009), CI-
FAR100 (Krizhevsky, 2009), Food101 (Bossard
et al., 2014), and Caltech101 (Li et al., 2022).
For ImageNet, we used Japanese class labels
from japanese-clip. Recruit consists of four
image classification tasks related to concepts and
objects unique to Japan: jafood101, jaflower30,
jafacility20, and jalandmark10, with 7,586 images
successfully retrieved from 7,654. For CIFAR10,
CIFAR100, Food101, and Caltech101, class labels
were translated into Japanese using DeepL.

In zero-shot image-text retrieval task, we used
CrossModal-3600 (XM3600) (Thapliyal et al.,
2022). XM3600 is a dataset containing multilin-
gual annotations for 3,600 images. In this exper-

9https://huggingface.co/datasets/recruit-jp/
japanese-image-classification-evaluation-dataset
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Model # Params
(M)

Image Classification Retrieval
Avg.ImageNet Recruit CIFAR10 CIFAR100 Food101 Caltech101 XM3600

I → T T → I
Japanese CLIP

Rinna ViT-B/16 196 50.6 39.9 90.7 64.0 53.2 84.6 53.8 54.0 61.4
Rinna ViT-B/16 cloob 196 54.6 41.6 88.2 60.3 57.2 80.2 53.4 53.4 61.1
LY ViT-B/16 196 52.0 83.8 96.3 76.7 73.9 88.4 76.9 78.0 78.3
llm-jp-clip-ViT-B/16 248 54.2 59.4 91.8 69.2 82.2 85.6 73.6 72.7 73.6
StabilityAI ViT-L/16 414 62.4 70.5 97.6 84.1 74.0 86.7 67.3 66.0 76.1
llm-jp-clip-ViT-L/14 467 59.5 62.9 96.4 77.0 88.2 87.8 74.1 74.1 77.5

Multilingual CLIP
SigLIP B/16-256 multi 370 51.9 71.2 92.4 65.8 78.6 85.6 45.9 43.0 66.8
jina-clip-v2 865 35.8 48.1 95.1 58.3 52.0 69.4 67.3 66.4 61.6
LAION ViT-H/14 multi 1193 53.0 74.5 97.9 78.4 74.3 85.1 75.0 72.0 76.3

Table 4: Performance of each model in zero-shot image classification and image-text retrieval tasks. Bold indicates
first place, and underline indicates second place.

Model # Params (M) Recruit

jafacility20 jafood101 jaflower30 jalandmark10 Overall
Japanese CLIP

Rinna ViT-B/16 196 63.0 28.4 56.5 60.3 39.9
Rinna ViT-B/16 cloob 196 61.5 27.3 63.5 69.4 41.6
LY ViT-B/16 196 82.0 83.8 90.5 91.8 83.8
llm-jp-clip-ViT-B/16 248 72.4 52.7 67.0 82.2 59.4
StabilityAI ViT-L/16 414 70.8 65.1 89.0 78.6 70.5
llm-jp-clip-ViT-L/14 467 75.3 55.8 73.5 84.7 62.9

Multilingual CLIP
SigLIP B/16-256 multi 370 64.9 70.7 88.5 68.0 71.2
jina-clip-v2 865 80.0 47.1 44.0 48.5 48.1
LAION ViT-H/14 multi 1193 80.5 69.1 85.4 89.1 74.5

Table 5: Performance of each model in zero-shot image classification across each subtask of Recruit.

iment, we used the first Japanese annotations as-
signed to each image.

Baseline Models To compare the performance
of our models, we used Japanese CLIP and multi-
lingual CLIP models. For Japanese CLIP models,
we used Rinna ViT-B/16 (Sawada et al., 2024),
Rinna ViT-B/16 cloob (Sawada et al., 2024), LY
ViT-B/16 (Shuhei et al., 2024), and StabilityAI
ViT-L/16 (Shing and Akiba, 2023). For multi-
lingual CLIP models, we used SigLIP B/16-256
multi (Zhai et al., 2023), jina-clip-v2 (Koukounas
et al., 2024), and LAION ViT-H/14 multi (Schuh-
mann et al., 2022). Details of the baseline models
can be found in Appendix A.

4.2 Results

The performance of each model is shown in Table 4.
Our llm-jp-clip-ViT-B/16 model achieves the sec-
ond highest average score among Japanese CLIP
models of similar size, following LY ViT-B/16. On
ImageNet, a key benchmark dataset for CLIP, llm-
jp-clip-ViT-B/16 achieved a high score of 54.2, sec-
ond only to Rinna ViT-B/16 cloob’s 54.6 among
models of similar size. However, Rinna ViT-B/16

Figure 1: Cosine similarity matrices of text and image
embeddings. Left: LY ViT-B/16. Right: llm-jp-clip-
ViT-B/16. The top-left block represents similarities
among text embeddings, the bottom-right block repre-
sents similarities among image embeddings, and the top-
right/bottom-left blocks represent similarities between
text and image embeddings. Brighter colors indicate
higher similarity.

cloob, which was trained on the relatively small
CC12M (Changpinyo et al., 2021) dataset, shows
limited generalization performance outside Ima-
geNet. We suspect that this is due to the limited
diversity and scale of CC12M, which restricts the
ability of the Rinna ViT-B/16 cloob to generalize
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Image Encoder ImageNet XM3600
I → T T → I

Full Scratch 54.2 73.6 72.7
Continued 52.9 71.6 71.7

LiT 52.7 71.7 70.9

Table 6: Effect of training settings of image encoders.

beyond ImageNet.
On Recruit, which contains images specific to

Japanese culture, its score was more than 30 points
lower compared to LY ViT-B/16. The performance
of each model in zero-shot image classification
across each subtask of Recruit is shown in Table 5.
We can observe that llm-jp-clip-ViT-B/16 signifi-
cantly underperforms compared to LY ViT-B/16 on
jafood101.

To investigate the cause of this performance gap,
we visualized and analyzed the embeddings of LY
ViT-B/16 and llm-jp-clip-ViT-B/16. We calculated
the cosine similarities between all combinations of
text and image embeddings for each class within
jafood101. The similarity matrices for both models
are shown in Figure 1. We can observe that LY
ViT-B/16 separates positive and negative text em-
beddings more clearly than llm-jp-clip-ViT-B/16.
This performance gap may be due to the lack of
examples specific to Japanese culture in the transla-
tion data, leading to poor results on Recruit, which
contains images specific to Japanese such as “交
番” (police station), “おでん” (oden, a Japanese
fishcake stew), and “鎌倉大仏” (the Great Buddha
of Kamakura).

4.3 Ablation Study on Image Encoder

We performed several ablation studies to determine
the optimal configuration of the image encoder.

Effect of Training Settings We experimented
with the following three training settings for the im-
age encoder: (1) Training from scratch, (2) Contin-
ued pre-training, and (3) Pre-training only the text
encoder with a frozen pre-trained image encoder
(Locked-image Tuning; LiT (Zhai et al., 2022)).
For the continued pre-training and LiT settings,
we initialized the weights of the image encoder
model using the LAION’s CLIP10. For all settings,
the text encoder was trained from scratch. To pre-
vent loss spikes in both the continued pre-training
and LiT settings, the peak learning rate was re-

10https://huggingface.co/laion/
CLIP-ViT-B-16-laion2B-s34B-b88K/tree/main

Figure 2: Accuracy curve of ImageNet zero-shot image
classification.

duced to 1.0× 10−4. Figure 2 shows the accuracy
curve of ImageNet for each setting, and Table 6
reports the final performance. Similarly to previ-
ous research (Zhai et al., 2022), LiT exhibited a
significant performance improvement in the early
stages of training, but subsequent improvements
were gradual. Although the initial performance of
ImageNet was low when training from scratch, sub-
stantial performance improvements were observed
as training progressed, surpassing both continued
training and LiT settings in the end.

Effect of Model Size We compared the perfor-
mance of ViT-B/16 and ViT-L/14. All settings other
than the image encoder were kept the same. The
results are shown in Table 4. In all tasks, ViT-
L/14 outperformed ViT-B/16. This reconfirmed
that increasing the model size leads to better perfor-
mance, as observed in the previous study (Cherti
et al., 2023).

Effect of Patch Size We examined the perfor-
mance differences on ImageNet caused by differ-
ent patch size settings in the image encoder. In
this study, we evaluated ViT-B/32 and ViT-B/16.
For ViT-B/32, the batch size was set to 16,384,
with gradient accumulation over two steps, and the
peak learning rate set to 1.0× 10−3. Other settings
were kept the same as those for ViT-B/16. The
results of accuracy curve on ImageNet are shown
in Figure 2. ViT-B/16 consistently outperformed
ViT-B/32, aligning with previous findings (Radford
et al., 2021), where smaller patch sizes yielded
better performance.
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5 Conclusion

In this study, we constructed a large-scale Japanese
image-text dataset using translation with open-
weight LLMs and pre-trained Japanese CLIP mod-
els on the dataset. The results demonstrated com-
petitive performance in the average score across the
benchmark datasets compared to models of similar
size. However, the performance on tasks related to
Japanese culture was relatively low, highlighting
the limitations of translation-based approaches in
capturing cultural nuances. Future work includes
building more diverse and high-quality Japanese
image-text datasets and further improving the per-
formance of Japanese CLIP models.

Limitations

In this study, we used open-weight LLMs for trans-
lation. While these models require GPUs, making
large-scale processing costly, recent advancements
have enabled access to smaller, high-performing
LLMs that offer a more cost-effective alternative.
For instance, assuming an average caption length
of 50 characters, translating 2.1 billion examples
with DeepL would cost approximately 260M JPY.
In contrast, using an open-weight LLM reduced the
cost to just 500K–1M JPY.
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A Details of Baseline Models

Table 7 shows the details of the baseline models:
Rinna ViT-B/1611, Rinna ViT-B/16 cloob12, LY
ViT-B/1613, StabilityAI ViT-L/1614, SigLIP B/16-
256 multi15, jina-clip-v216, and LAION ViT-H/14
multi17.

11https://huggingface.co/rinna/japanese-clip-vit-b-16
12https://huggingface.co/rinna/japanese-cloob-vit-b-16
13https://huggingface.co/line-corporation/

clip-japanese-base
14https://huggingface.co/stabilityai/

japanese-stable-clip-vit-l-16
15https://huggingface.co/google/

siglip-base-patch16-256-multilingual
16https://huggingface.co/jinaai/jina-clip-v2
17https://huggingface.co/laion/

CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k
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Model # Params (M) Training Dataset
Japanese CLIP
Rinna ViT-B/16 196 CC12M (Changpinyo et al., 2021)
Rinna ViT-B/16 cloob 196 CC12M
LY ViT-B/16 196 CC12M, YFCC100M (Thomee et al., 2016), Common Crawl†

StabilityAI ViT-L/16 414 CC12M, MS-COCO (Lin et al., 2014)
Multilingual CLIP
SigLIP B/16-256 multi 370 WebLI† (Chen et al., 2023b)
jina-clip-v2 865 DFN (Fang et al., 2023), CommonPool (Gadre et al., 2023)
LAION ViT-H/14 multi 1193 LAION-5B (Schuhmann et al., 2022)

Table 7: Details of the baseline models used in the experiment. Datasets marked with † are not publicly available.
We report only the primary dataset used by the developers.

9
170


