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Abstract
Advances in Natural Language Processing
(NLP) have the potential to transform HR pro-
cesses, from recruitment to employee manage-
ment. While recent breakthroughs in NLP have
generated significant interest in its industrial
applications, a comprehensive overview of how
NLP can be applied across HR activities is still
lacking. This paper discovers opportunities for
researchers and practitioners to harness NLP’s
transformative potential in this domain. We
analyze key fundamental tasks such as informa-
tion extraction and text classification, and their
roles in downstream applications like recom-
mendation and language generation, while also
discussing ethical concerns. Additionally, we
identify gaps in current research and encourage
future work to explore holistic approaches for
achieving broader objectives in this field.

1 Introduction

Human Resources (HR) is a vital component of any
organization, responsible for managing its most
valuable resource—people. Over the years, com-
putational tools have transformed HR processes
like hiring, training, and administration, reshap-
ing the labor market and workplace. At the same
time, concerns about the accuracy and fairness
of automated systems have also garnered signif-
icant attention, paving the way for ongoing and
future research. Advancements in Natural Lan-
guage Processing (NLP), especially with large lan-
guage models (LLMs), have spurred interest in
applying language technologies to a broad range
of real-world problems, and the HR domain is no
exception. However, this domain remains relatively
underrepresented in the NLP research community.1

As breakthroughs in LLMs continue to advance
various aspects of NLP, key challenges in the HR

1Despite the development of many innovative applications
in the industry (Barth, 2024), major conferences such as ACL,
NAACL, EMNLP, EACL, and COLING featured only three
papers with “job” or “human resources” in their titles in 2024.
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Figure 1: Concept of this survey paper. We review
and categorize HR-related problems through the lens of
core NLP research areas.

domain, such as the complexity of processing het-
erogeneous data, and the scarcity of publicly avail-
able data resources, may be alleviated in the com-
ing years. Therefore, the HR domain holds substan-
tial potential for growth and also presents unique
challenges that can drive NLP research forward.
To facilitate this transformation, it is essential to
develop a comprehensive overview of key HR ac-
tivities from an NLP perspective and examine how
upstream tasks, such as skill extraction, contribute
to downstream applications like job matching.

In this paper, we analyze HR activities through
the lens of NLP research, categorizing them into
key areas and examining how NLP techniques have
been applied, along with remaining challenges (Fig-
ure 1).2 We explore fundamental tasks like infor-
mation extraction and text classification (§3), and
their role in supporting core applications such as
recommendation, language generation, and interac-
tion (§4). Finally, we highlight underrepresented
areas in NLP to guide future research (§5). By orga-
nizing the discussion around NLP research topics,
our goal is to provide insights for two audiences:
(1) NLP researchers seeking impactful problems in
the HR domain, and (2) those exploring how NLP
can address HR challenges.

2NLP research is relevant to various HR activities. How-
ever, most existing studies focus primarily on talent acquisi-
tion, which is why this topic receives greater emphasis in the
paper.
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Figure 2: Landscape of NLP applications within the HR domain.

Previous surveys on this topic have typically
focused on specific HR tasks and applications,
such as information extraction from job post-
ings (Khaouja et al., 2021; Senger et al., 2024),
market analysis (Rahhal et al., 2024), job recom-
mendation (Balog et al., 2012; de Ruijt and Bhu-
lai, 2021; Freire and de Castro, 2021; Mashayekhi
et al., 2024), conversational agents (Laumer and
Morana, 2022), and fairness (Hunkenschroer and
Luetge, 2022; Kumar et al., 2023; Fabris et al.,
2024). While general literature reviews in this field
provide a broad overview of relevant computational
research (Budhwar et al., 2022; Sharma, 2021; Qin
et al., 2024; Khan, 2024), they do not specifically
explore insights into language technologies. In con-
trast, we focus on core NLP methodologies, such as
information extraction, text classification, retrieval,
and language generation, and discuss their evolving
role in various HR applications.3

This paper provides a structured NLP-centric
perspective that systematically maps NLP tasks to
HR challenges, making it easier for readers with an
NLP background to identify relevant research op-
portunities and for HR practitioners to connect with
relevant methods.4 We highlight how specialized
tasks contribute to broader goals, such as job title
understanding for skill extraction and skill extrac-
tion for job matching, and encourage future work
to explore holistic approaches for achieving these
objectives. To further advance this field, we recom-
mend the development and use of real or real(istic)
datasets to enhance the relevance and impact of
research outcomes.

3While a position paper by Leidner and Stevenson (2024)
also explores NLP applications in this field, it does not provide
a comprehensive literature review.

4We describe our literature survey methodology in Ap-
pendix A.

2 What is HR Concerned with?

This section briefly describes HR activities and
their links to NLP. Broadly, these activities can be
categorized into pre-hiring and post-hiring tasks.

Pre-hiring: The pre-hiring process for recruiters
includes drafting job postings, selecting candidates,
conducting interviews, and extending offers. For
job seekers, it involves exploring market trends,
pursuing necessary training, preparing resumes,
applying for jobs, preparing for interviews, and
negotiating offers. These tasks rely heavily on nu-
anced domain-specific knowledge and are closely
related to language generation (e.g., writing job
postings and resumes, text-based communication)
and specialized dialogue (e.g., interviews).

Post-hiring: Key HR functions include setting
role requirements aligned with organizational goals,
evaluating performance, optimizing team dynam-
ics, and maintaining positive work environments.
These tasks are complex, demanding occupation-
specific insights and integration of diverse data
sources like employee records, organizational net-
work, and textual communications.

The application of NLP techniques for these ac-
tivities faces several challenges: (1) Diverse enti-
ties and language expressions in HR data, such
as the concise, bullet-pointed style of resumes or
performance feedback, which vary across indus-
tries (e.g., software development vs. culinary arts).
(2) The need for deep understanding of domain-
specific knowledge, which is often not readily
available in raw text corpora . (3) Biases in data-
driven systems, reflecting stereotypes, proxies for
sensitive attributes, and external barriers (Calanca
et al., 2019; Glazko et al., 2024).

The following sections review existing research
on HR activities, organized by NLP topics, with
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a focus on upstream tasks (§3) and downstream
tasks (§4). We then discuss underrepresented HR
activities (§5) that could benefit from recent NLP
advancements (Figure 2).

3 Upstream Tasks

Upstream HR tasks aim to enrich raw text corpora
through information extraction and classification to
facilitate knowledge-intensive downstream tasks.

3.1 Taxonomy Creation
Significant efforts have been made to acquire
domain-specific knowledge and develop HR-
related taxonomies to organize information on oc-
cupations, industries, skills, education, and certi-
fications. This has led to the creation of large-
scale resources such as the European Skills, Com-
petences, Qualifications and Occupations (ESCO;
le Vrang et al., 2014) and others (Lau and Sure,
2002; International Labour Organization, 2012;
Bastian et al., 2014; National Center for O*NET
Development). Expert-driven taxonomy creation
can yield high-quality resources, but maintaining
them is challenging. To reduce the costs, some
studies have used Wikipedia (Kivimäki et al., 2013;
Zhao et al., 2015) and the consolidation of web
resources (Gugnani and Misra, 2020). However,
taxonomy creation remains highly complex due to
cultural and regional variations (Tu and Cannon,
2022).

3.2 Information Extraction
The extraction of HR-related information, particu-
larly job-related skills, has been extensively studied
in the research community (Khaouja et al., 2021;
Senger et al., 2024). Skills include a range of com-
petencies, such as technical expertise, knowledge,
and the ability to learn and apply new concepts 5.
Other studies have also focused on extracting infor-
mation like work experience and education (De Sit-
ter and Daelemans, 2003; Finn and Kushmerick,
2004; Green et al., 2022).

This challenge is often framed as a sequential
labeling problem with models trained on in-domain
corpora (Sayfullina et al., 2018; Green et al., 2022;
Zhang et al., 2022). Recent studies have explored
multi-task and transfer learning (Fang et al., 2023;
Zhang et al., 2023, 2024a) to address the diversity
and long-tail nature of job-related information. For

5Some literature differentiates skills from knowledge, com-
petencies, and qualifications, but for simplicity, we consider
skills to encompass all types of proficiency.

extraction from resumes, the use of layout infor-
mation has proven useful. Early work by Yu et al.
(2005) introduced a two-pass model that segments
and labels resume sections before identifying spe-
cific details. A similar approach is adopted by Yao
et al. (2023) for extracting information from re-
sumes in PDF format.

3.3 Classification and Entity Linking

Classification of job-related documents plays a
crucial role, especially in hiring, by organizing the
large volumes of content generated by job seekers
and recruiters. Previous research has focused on
classification tasks such as categorizing resumes by
job type (Inoubli and Brun, 2022) and sorting job
postings into occupation categories (Lake, 2022).
Text classification within documents—such as de-
tecting section types (Wang et al., 2022) or analyz-
ing work experience details (Li et al., 2020a)—can
also be useful for downstream applications like
job recommendation. Automated text classification
methods have already been widely used in soci-
ety as part of Applicant Tracking Systems (ATS),
which has also drawn attention to their potential
bias issues (§4.4).

Job title normalization involves consolidating
job titles expressed into a finite set of occupation
categories. Prior work has addressed this by incor-
porating skill information (Decorte et al., 2021) and
behavioral data into computational modeling (Liu
et al., 2020a; Ha et al., 2020; inter-alia). For exam-
ple, Zhang et al. (2019) integrated a job transition
graph to model compositional meaning of job ti-
tles, while Zhu and Hudelot (2022) enhanced this
graph by further adding edges from component
words. Recent studies have demonstrated the effec-
tiveness of Transformer-based text encoders (Ya-
mashita et al., 2023; Laosaengpha et al., 2024), yet
this task remains challenging due to issues such
as the length of documents, the presence of irrele-
vant information (e.g., location), and the reliance
on domain knowledge.

A similar task is skill classification, which in-
volves mapping texts to a pre-defined taxonomy
like ESCO (le Vrang et al., 2014). Some studies
have employed methods based on similarity match-
ing, while others have formulated the task as a
multi-label classification problem (Senger et al.,
2024). A notable challenge in this task is han-
dling diverse skill labels.6 Zhang et al. (2024b)

6For example, ESCO v1.2.0 contains 13,939 skills.
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Job seeker Job

Figure 3: The problem of job recommendation (§4.1) is a two-sided process relying on multiple facets of
information, such as expertise and requirements. Even if a job seeker prefers a particular job, the candidate may not
necessarily be the best fit for the position.

demonstrated that entity linking models trained
on Wikipedia data can be effectively adapted to
the HR domain. Other studies have explored im-
plicit relationships between occupations and skills
to improve skill identification. Bhola et al. (2020)
used a bootstrapping technique leveraging skill
co-occurrence, while Goyal et al. (2023) used a
job-skill graph to capture implicit relationships be-
tween skills. To collect training data efficiently,
Decorte et al. (2022) proposed distant supervision,
and recent studies have used LLMs to synthesize
annotated texts (Decorte et al., 2023; Clavié and
Soulié, 2023; Magron et al., 2024).

3.4 Summary

Upstream HR tasks face challenges such as lan-
guage complexity and diversity, varying types
of data, and insufficient labeled data for train-
ing. While existing research has introduced in-
novative approaches to address these issues, some
challenges remain underexplored. These include
handling implicit information (e.g., inferring job
requirements like a “driver’s license” for truck
drivers) and scaling extraction methods to accom-
modate emerging jobs and skills.

4 Downstream Tasks

Downstream HR applications broadly leverage
NLP techniques across retrieval and recommen-
dation, language generation, and dialogue systems.
This section delves into these areas, followed by a
discussion on the challenges of fairness and bias
within these tasks.

4.1 Retrieval and Recommendation

Job recommendation (or Person-Job fit) is typi-
cally framed as a text matching problem between
job descriptions and resumes, addressed by var-
ious encoding methods such as word/document

vectors (Elsafty et al., 2018; Zhu et al., 2018a; Mo-
genet et al., 2019) and Transformers (Lavi et al.,
2021; Kaya and Bogers, 2023).7 The task is in-
herently two-sided, requiring consideration of the
multifaceted preferences of both recruiters and job
seekers (Figure 3). To address this problem, previ-
ous work has extracted and integrated fine-grained
factors like skills (Dave et al., 2018; Li et al., 2020b;
Yao et al., 2022; inter-alia), experience levels (Li
et al., 2020a), and more (Ha-Thuc et al., 2016;
Luo et al., 2019; Gutiérrez et al., 2019; Lai et al.,
2024) into matching models. Leveraging the lin-
guistic capability of LLMs is an emerging research
area, with studies exploring how LLMs can refine
documents to alleviate the challenge of linguistic
complexity (Zheng et al., 2023a; Du et al., 2024)
and integrating structured knowledge to improve
accuracy and interpretability (Wu et al., 2024).

Course recommendation aims to help people
bridge skill gaps by matching them with relevant
courses from various data sources. Existing meth-
ods identify underlying factors using Transformer
encoders (Hao et al., 2021), Bayesian variational
networks (Wang et al., 2021), and generative ad-
versarial networks (Zheng et al., 2023b). Recently,
LLM-based systems have emerged with modular
components for upstream tasks like skill extraction,
entity linking, and matching (Frej et al., 2024).

Retrieval and recommendation tasks in the HR
domain are highly knowledge-intensive and often
involve challenges associated with the heterogene-
ity of data sources such as documents and behav-
ioral data. Although existing approaches have de-
veloped sophisticated methods to tackle these chal-
lenges, there remains substantial potential for in-

7For more comprehensive review of this field, refer to
specialized survey papers (Balog et al., 2012; de Ruijt and
Bhulai, 2021; Freire and de Castro, 2021; Mashayekhi et al.,
2024).
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tegrating pre-trained language models to improve
language comprehension (Zhu et al., 2024).

4.2 Language Generation

Generating job postings and resumes is an im-
pactful real-world application8 that requires a nu-
anced understanding of job-specific skills across
diverse work environments. Creating accurate job
requirements, in particular, heavily relies on do-
main knowledge. Liu et al. (2020b) represented
the relationships between skills, company size, and
job titles using graphs, employing graph neural
networks to generate job requirements. Similarly,
(Qin et al., 2023) used a topic model to incorporate
skill information into a job requirements genera-
tor. Other work has addressed job posting gen-
eration as a data-to-text task using a rule-based
system (Somers et al., 1997) and a fine-tuned lan-
guage model (Lorincz et al., 2022), with a focus on
the fluency and adequacy of the generated texts.

Generating interview questions is also a
knowledge-intensive task in the HR domain that
can streamline the time-consuming candidate
screening process. Automated systems have shown
promise in generating questions based on the key
requirements of a job position (Shi et al., 2020).
Beyond this, NLP technologies can assist in craft-
ing personalized questions by leveraging contex-
tual information (Inoue et al., 2020; Rao S B et al.,
2020), structured knowledge (Su et al., 2019), or
web search (Qin et al., 2019, 2023).

Language generation tasks in the HR domain
present several characteristic challenges. For in-
stance, these tasks often involve generating output
based on lengthy inputs with mixed topics (e.g., job
postings). Existing work has typically focused on
simplified problem settings (e.g., inputs that have
already been parsed into skill tags). Accurately and
efficiently processing such complex inputs remains
an open problem.

4.3 Dialogue Systems

Job interviews present significant NLP research
opportunities. Researchers have developed auto-
mated interviewing systems for communication
skills training, which provide feedback through
visualizations of user behavior (Hoque et al., 2013;
Rao S. B et al., 2017) and adapt their interactions

8For instance, on Indeed’s platform, more than 750,000
employers have used an automated job posting generation
system for approximately 2 million jobs as of July 2024 (Batty,
2024).

based on emotional states (Anderson et al., 2013;
Hartholt et al., 2019; Kawahara, 2019). Addition-
ally, techniques for post-interview assessment have
been proposed, combining various visual and audio
features linearly (Nguyen et al., 2014; Rao S. B
et al., 2017; Naim et al., 2018) or with advanced
neural networks (Hemamou et al., 2019). These
studies have advanced the state of the art in pro-
cessing multi-modal information, such as facial
expressions, gestures, and speech. The rapid devel-
opment of multi-modal LLMs could lead to new
advancements in job interview systems. However,
simply applying LLMs without domain-specific
tuning can be ineffective, as a deep understanding
of specialized knowledge is crucial for conducting
meaningful conversations (Li et al., 2023).

Interactive systems can also be used for manag-
ing HR-related inquiry. A case study by Malik
et al. (2022) showed positive effects of chatbots
on employee experiences in HR activities. Col-
lecting interactive data in specialized domains is
challenging, but Xu et al. (2024) demonstrated the
effectiveness of LLMs to simulate interactions for
post-hiring HR transactions.

4.4 Ethics, Bias, and Fairness
Fairness concerns in algorithmic hiring have been
widely studied in various research fields (Hunken-
schroer and Luetge, 2022; Kumar et al., 2023; Fab-
ris et al., 2024), with bias mitigation techniques
focusing on reducing disparities in algorithmic
outcomes across sensitive groups. These tech-
niques span multiple stages of system development
and evaluation (Quiñonero-Candela et al., 2023),
including biased keyword removal from input
text (De-Arteaga et al., 2019), balanced data sam-
pling, internal representation adjustments (Hauzen-
berger et al., 2023; Masoudian et al., 2024), and
post-processing methods (Geyik et al., 2019).

The association between occupations and sensi-
tive attributes has also been a significant focus in
text representation and generation. Studies have
shown that word embeddings link gender pronouns
with specific job titles, such as “she” with “nurse”
and “he” with “physician” (Sun et al., 2019). Sim-
ilar gender biases are found in system-generated
texts (Sheng et al., 2019; Borchers et al., 2022).
For example, Wan et al. (2023) found that person
names, which can serve as proxies for sensitive
attributes, influence LLM-generated reference let-
ters. An et al. (2024) and Nghiem et al. (2024) also
report name-related biases in LLM-based hiring

587



decisions, highlighting the need for careful consid-
eration in these applications.

Blodgett et al. (2020) conducted a literature re-
view and argued the importance of carefully con-
ceptualizing “bias” and grounding it in theories
established outside of NLP. In the HR domain, fair-
ness and bias have been extensively studied for
decades (Bertrand and Mullainathan, 2004). This
rich theoretical and empirical foundation could of-
fer valuable insights to NLP research. A notable
example is the bias evaluation framework by Wang
et al. (2024). This framework is informed by in-
sights from labor economics, legal principles, and
existing benchmarks, enabling a comprehensive
and theoretically grounded evaluation of hiring de-
cisions generated by LLMs.

4.5 Summary

Downstream HR tasks are highly knowledge-
intensive and also necessitate ethical and safety
considerations. Researchers have addressed these
with advanced modeling techniques that leverage
detailed information such as extracted skills. Look-
ing ahead, the contextual understanding, and rea-
soning capabilities of modern LLMs present an
opportunity to develop holistic approaches that in-
tegrate specialized modules to address overarching
goals in downstream HR tasks.

5 Underrepresented Tasks

Finally, we discuss HR activities that have been
underrepresented in NLP research. Some of these
tasks have received attention in broader research
communities, but significant opportunities remain
to leverage language resources for advancing com-
putational methods.

5.1 Data Analytics

Analyzing the labor market (Rahhal et al., 2024)
can greatly benefit from data/text mining tech-
niques. The insights gained can be valuable for
policymakers, educators, and businesses.

Job title benchmarking involves matching job
titles with equivalent expertise levels across differ-
ent companies. Similarly, job mobility analysis
focuses on identifying transferability between jobs
while accounting for their specialties and work en-
vironments. These tasks are similar to the task of
job title normalization (§3.3) but require a deeper
analysis of individual roles and organizations. For
example, a company’s industry and size often in-

fluence an employee’s next career move. There-
fore, previous work has developed methods to in-
tegrate diverse information linked to career trajec-
tories with LSTMs (Li et al., 2017), multi-view
learning (Zhang et al., 2019) and graph neural net-
works (Zhang et al., 2021; Zha et al., 2024).

The assessment of skill demand and value is
important not only for hiring but also for economic
research (Zhu et al., 2018b; Cao et al., 2021) and
education (Hao et al., 2021; Patacsil and Acosta,
2021). While this area has not yet gained much
attention within the NLP community, a variety of
techniques have been explored in the broader re-
search field. For instance, Sun et al. (2021) intro-
duced a neural model to break down job positions
into required skills and assess their market value
through salary prediction. Chao et al. (2024) pro-
posed a graph encoder over a skill co-occurrence
graph to capture demand-supply patterns in skill
evolution. More recently, Chen et al. (2024) devel-
oped a large-scale dataset for forecasting job-skill
demand, which opens avenues for future research.
Although these studies effectively utilize structured
data, skills are often described by simple phrases
that may not fully convey their true functions. For
example, “communication skills” can differ sig-
nificantly based on the context (e.g., schools vs.
consulting firms). Future research could focus on
extracting rich contextual information from textual
data such as job postings to enhance the depth of
analysis.

5.2 Sentiment Analysis and Opinion Mining

Sentiment about jobs and organizations can be col-
lected through questionnaires or reviews from plat-
forms like Glassdoor.9 This information has the
potential to help organizations create work environ-
ments, boost productivity, and improve business
outcomes (Harter et al., 2002).

Employee satisfaction (job satisfaction) analy-
sis focuses on evaluating work environments and
identifying areas for improvement based on em-
ployee feedback. Moniz and de Jong (2014) ap-
plied topic modeling to online employee reviews
to uncover key themes related to the organization’s
future. Rink et al. (2024) approached this as an
aspect-based sentiment analysis task, creating an-
notated datasets and fine-tuning transformer-based
classifiers. While these studies highlight valuable
use cases of sentiment analysis, addressing the di-

9https://www.glassdoor.com/
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versity of job categories remains an open challenge.
Company profiling focuses on identifying the

key characteristics of a company. Early work relied
mainly on numerical data, but recent studies have
successfully incorporated textual data for deeper
insights (Bajpai et al., 2018; Lin et al., 2020). For
example, Lin et al. (2020) proposed a model-based
topic approach that integrates review texts with
numerical data to perform both qualitative opinion
analysis and quantitative salary benchmarking.

5.3 Summary

This section highlighted several HR activities that
offer significant opportunities to explore NLP tech-
niques with heterogeneous data. In a similar vein,
other core HR tasks, such as employee performance
evaluation (Ye et al., 2019; Yu et al., 2023) and
turnover analysis (Teng et al., 2019; Gamba et al.,
2024), also provide interesting challenges. Future
efforts should focus on constructing publicly acces-
sible datasets to drive advancements in this area.
Applying LLMs to synthesize data or de-identify
Personally Identifiable Information (PII) in real-
world datasets could offer a promising solution to
the problem of data scarcity. However, they should
be used with caution, as issues such as amplifying
biases (§4.2) and exposing sensitive information
from training data (Carlini et al., 2021) remain.

6 Conclusion and Future Directions

In this paper, we have categorized critical research
challenges within the HR domain and identified sig-
nificant opportunities for future exploration. To in-
spire future research in this domain and the broader
NLP community, we provide a list of papers and
public data resources on GitHub,10 which we plan
to update regularly.

Toward Broader Goals: The HR domain encom-
passes a variety of specialized problems where
NLP techniques have been successfully applied
(e.g., skill extraction). These problems are often
tied to broader goals, such as matching talent with
appropriate job opportunities and optimizing em-
ployee productivity. For example, accurate skill
extraction can significantly improve job recom-
mender systems. To accurately extract this skill
information, it is useful to perform semantic analy-
sis of documents to identify relevant sections and
understand job titles. Intermediate tasks like these

10https://github.com/megagonlabs/nlp4hr-survey

can improve system performance in downstream
applications and provide detailed information that
can improve the fairness and transparency of fi-
nal outcomes. The orchestration of specialized
NLP tools to perform complex tasks is increas-
ingly gaining the interest of the research commu-
nity (e.g., Schick et al., 2023). The HR domain
would benefit from exploring holistic approaches,
which could also provide research opportunities to
push the boundaries of language technologies.

Knowledge Transfer: Some successful research
in the HR domain has introduced techniques and
knowledge transferable to problems in other ap-
plications or domains. This trend is particularly
evident in studies on job recommendation and bias
mitigation, where the HR domain has established
a strong position within the research community.
We can also see similar knowledge transfer in some
other specialized domains. For instance, the e-
commerce domain has been one of the key drivers
of multiple core NLP areas such as information
extraction, sentiment analysis, and summarization.
Promoting knowledge transfer to other domains
will be key to conducting impactful NLP research
in HR in the future.

Data Challenge: The availability of real or re-
alistic datasets is a critical factor for advancing
NLP research in the HR domain. Many types of
HR documents involve privacy concerns that make
them unsuitable for public release. However, ap-
proaches such as shared tasks with restricted data
licenses, data donation,11 anonymization, and data
synthesis could provide valuable resources to the
research community. Moreover, working with real-
world datasets would also help researchers identify
system constraints and requirements in practical
scenarios such as latency requirements, increasing
the social impact of research artifacts.

The Application of LLMs: The application of
LLMs has gained popularity in the HR domain.
While the collection and annotation of HR doc-
uments pose significant challenges, some studies
have demonstrated the potential of LLMs to allevi-
ate these issues. Furthermore, LLMs may introduce
a new paradigm for many problems, offering sub-
stantial opportunities for researchers to generate
innovative ideas that benefit both the HR domain
and the broader research community.

11FINDHR collected more than 1,100 CVs through dona-
tions (https://findhr.eu/datadonation/).

589

https://github.com/megagonlabs/nlp4hr-survey
https://findhr.eu/datadonation/


Limitations

Due to space constraints, this paper aims to pro-
vide a focused literature review to offer readers a
concise yet effective overview of HR applications.
For those interested in a broader collection of NLP
research in HR, we provide a list of papers and
language resources on GitHub,10 which we plan to
update regularly. While there are numerous other
NLP challenges in HR, such as linguistic and so-
cietal analysis (e.g., demographic, language, and
cultural differences), we did not extensively cover
these topics due to space limitations. As a result,
the majority of papers discussed focus on widely
spoken languages like English and Chinese. Lastly,
while many companies are adopting modern NLP
solutions in HR tasks, we have only reviewed tech-
niques published in academic conferences.
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A Paper Collection

In this paper we aimed to offer a curated overview
of key research challenges rather than a systematic
and exhaustive literature review due to the page
limit. Before curating papers, we employed the
following approach to gather relevant papers. We
begin by identifying recently published HR-related
papers using keywords such as “job,” “occupation,”
“hiring,” “recruit,” “resume,” “HR,” “company,” and
“skill” from venues such as ACL conferences, KDD,
CIKM, WWW, SIGIR, RecSys, AAAI, IJCAI, and
relevant workshops. Additionally, we conduct key-
word searches on Google Scholar and Semantic
Scholar to collect non-computational papers. Sub-
sequently, we employ snowball sampling from the
citations of these papers to further gather relevant
literature. We include peer-reviewed academic pa-
pers available as of December 2024 and exclude the
others unless they are cited from multiple academic
papers.
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