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Abstract
Recent work using word embeddings to model
semantic categorization have indicated that
static models outperform the more recent con-
textual class of models (Majewska et al., 2021).
In this paper, we consider polysemy as a possi-
ble confounding factor, comparing sense-level
embeddings with previously studied static em-
beddings on both coarse- and fine-grained cate-
gorization tasks. We find that the effect of pol-
ysemy depends on how one defines semantic
categorization; while sense-level embeddings
dramatically outperform static embeddings in
predicting coarse-grained categories derived
from a word sorting task, they perform ap-
proximately equally in predicting fine-grained
categories derived from context-free similarity
judgments. Our findings highlight the differ-
ent processes underlying human behavior on
different types of semantic tasks.

1 Introduction

A great deal of work has been devoted in recent
years to creating computational models of meaning
(Landauer and Dumais, 1997; Mikolov et al., 2013;
Pennington et al., 2014; Peters et al., 2018; Devlin
et al., 2019). Such models have been evaluated on
a variety of semantic tasks, from word pair simi-
larity judgments to document classification. One
task that has received relatively little attention is
semantic categorization. Besides making pair-wise
judgments about the similarity between two words,
humans can also reason about higher-order struc-
tures; we can tell not only that robin and sparrow
are similar to each other, for example, but also that
they belong in a group with other birds (e.g. ostrich
and pigeon). Based on the impressive performance
of embedding models on other semantic tasks, we
expect such models to excel at identifying semantic
categories as well.

Our particular interest is on the role of polysemy
in semantic categorization. Because words gener-
ally have multiple distinct senses, categorization

decisions will depend on which sense of a word is
being considered. Representing the distinct senses
of polysemous words, then, should be important to
modeling how humans categorize words. For this
reason, we expect contextual embeddings, which
represent each instance of a word in context as a
unique embedding, to model semantic categoriza-
tion better than static models, which conflate every
use of a word into a single representation. But,
in fact, recent work evaluating different word em-
bedding models on verb categorization suggests
just the opposite; Majewska et al. (2021) found
that contextual models perform poorly compared
to older static models.

In the following paper, we challenge this result.
First, we extend the evaluation from Majewska et al.
(2021), who compare word embedding clusters to
coarse-grained semantic categories generated by
humans in a word sorting task, by evaluating sense-
specific embeddings in addition to the static em-
beddings previously reported. We find that retain-
ing sense-level information from contextual BERT
embeddings more than doubles its F1 score, outper-
forming static embeddings by a large margin. This
result suggests that the reported under-performance
of BERT in Majewska et al. (2021) was due not to
the irrelevance of context to categorization or an
inherent weakness of contextual embedding mod-
els, but rather to the fact that information about
polysemy was thrown away in generating static
embeddings from contextual models.

Next, we evaluate the same set of models on
fine-grained categorization, using categories de-
rived from human similarity judgments. Contrary
to the coarse-grained setting, we find that static
and contextual models perform about the same in
predicting fine-grained categories. We surmise that
humans use different cognitive processes to per-
form word sorting vs similarity judgment tasks.
Choosing the best word embeddings thus depends
on the type of behavior one is trying to model.
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2 Background

Since both static and contextual embeddings have
been shown to model pairwise similarity between
words well (Pereira et al., 2016; Chronis and Erk,
2020), and since similarity is a primary criterion for
categorization, it seems intuitive that word embed-
dings should perform well at categorization tasks.
Some previous work supports this intuition; word
embeddings have excelled at word sense disam-
biguation (Giulianelli et al., 2020; Soler and Apid-
ianaki, 2021; Chronis and Erk, 2020) and topic
modeling (Sia et al., 2020; Aharoni and Goldberg,
2020) when cast as categorization problems.

In the present paper, we are interested in se-
mantic category induction. Instead of grouping in-
stances of a word into distinct senses, or documents
into topics, the goal of semantic categorization is to
group unique words into semantically related clus-
ters. This more abstract type of categorization has
received less attention in the word embedding lit-
erature; a few probing studies have tested whether
different models encode a pre-defined set of cat-
egories (Senel et al., 2018; Yaghoobzadeh et al.,
2019; Michael et al., 2020), but in all cases these
categories were stipulated by the researchers and
had not been experimentally validated.

Majewska et al. (2021) recently published a
more empirical categorization dataset, based on
judgments from non-expert native speakers, rather
than stipulated by trained researchers. The dataset,
SpA-Verb1, contains data from two tasks. The first
is a sorting task, where participants grouped a set
of verbs into broad semantic classes. The second
task involves spatial multi-arrangement, which pro-
vides finer-grained judgments about the similarity
between words within a single semantic domain.
SpA-Verb is valuable as an evaluation resource
for modeling categorization because it allows for
a more direct comparison between human catego-
rization behavior and model behavior than previous
datasets. Also, SpA-Verb contains 825 verbs in 17
semantic classes, which is much more comprehen-
sive than other available category datasets.

Most of the verbs in SpA-Verb are polysemous.
While many words belong to more than one class
(corresponding to distinct senses of those words),
the dataset has so far only been used to evaluate
static word embeddings (either from static mod-
els or extracted static representations from contex-
tual models). Our goal with the following study

1https://github.com/om304/SpA-Verb

is to find out when polysemy matters in modeling
natural language semantics, in particular, whether
sense-specific representations are better predictors
of human behavior on some semantic tasks, but not
others.

3 Models

Below we describe the word embedding models we
evaluate on SpA-Verb:

3.1 Word2vec

The first model we evaluate is a word2vec model
trained on part-of-speech-tagged data (Fares et al.,
2017). POS tagging allows the static model to dis-
tinguish between senses which have different parts
of speech (e.g. duck_NOUN and duck_VERB), al-
though senses which have the same POS are still
conflated into a single vector (e.g. get#ACQUIRE
and get#UNDERSTAND). Skip-gram with negative
sampling was used to train the model on Gigaword
5th Edition (Parker et al., 2011), with a context
window size 5 and 300 dimensions.

3.2 BERT

We evaluate three methods of extracting BERT
embeddings: two baseline methods, which cre-
ate one representation per word form, and a multi-
prototype method which generates one representa-
tion per word sense. For all methods we use BERT
Base Uncased from HuggingFace’s transformers
package (Wolf et al., 2020).

Decontextualized (Decont). First and most sim-
ply, we extract embeddings from BERT by feeding
each word to the model in isolation. This creates a
single, static embedding for each word. This strat-
egy has been used previously as a way to easily
extract ‘context-free’ representations from BERT
(Liu et al., 2019; Vulić et al., 2020).

Aggregated (Aggr). Next, we create static em-
beddings from BERT by averaging a word’s embed-
dings across 100 unique contexts. This aggregated
approach still reduces a word to a single representa-
tion, but has been shown to produce higher quality
representations than the decontextualized strategy
(Bommasani et al., 2020).

Multiprototype (MPro). Finally, to test
whether sense-specific information is important
to semantic categorization, we distill token-level
BERT embeddings into multiple prototype embed-
dings. We use the method of Chronis and Erk
(2020) to generate representations which corre-
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Model F1-optimal F1-gold
Random baseline 0.204 0.161

Majewska word2vec 0.355 0.326
Majewska best BERT 0.340 0.322
POS-tagged word2vec 0.442 0.433

Decont. BERT 0.309 0.191
Aggr. BERT 0.398 0.346
MPro BERT 0.743 0.687

Table 1: Average F1 across models on coarse-grained
categories. ‘Gold’ is for k=17, as in the ground truth.
‘Optimal’ is best result for k in the range (5, 50).

spond to different senses of a word, without col-
lapsing every token into a single representation (see
Appendix A).

3.3 Random Baseline
Finally, we generate random vectors and evalu-
ate them in order establish a baseline for random
chance performance.

4 Evaluation

To evaluate the performance of each model on the
ground truth classes, k-means clustering is used
to group verbs into predicted classes. We use the
same metrics as Majewska et al. (2021): modified
purity and weighted class accuracy are combined in
an F1 score, calculated as their balanced harmonic
mean. Modified purity is the mean precision of
predicted clusters, while weighted class accuracy
targets recall (see Appendix B).

Because MPro BERT has multiple representa-
tions for a single word, the same word form may
show up more than once within a single cluster. To
prevent artificially inflating the recall in evaluating
MPro BERT, we eliminate duplicates within each
cluster before evaluation.

5 Coarse-grained Categorization

Next we describe our evaluation of each model on
coarse-grained categorization.

5.1 Dataset
The Phase 1 data of SpA-Verb contains 825 verbs
in 17 broad classes (see Appendix C). 116 verbs
belong to more than one class. No words were
assigned to more than 3 classes.

5.2 Results
Table 1 shows the results of each embedding type,
compared to results reported in Majewska et al.

(2021). The baseline models (Decont. and Aggr.
BERT) perform comparably to previously reported
results. POS-sensitive word2vec model scores
about 10 points higher than reported for a simi-
lar model architecture without POS information.
MPro BERT performs dramatically better than
other embeddings, achieving more than double the
F1 score of the best previously reported BERT re-
sults. This suggests that polysemy does play an
important role in modeling semantic categoriza-
tion.

When we look more closely at MPro BERT, we
find that embeddings from later layers are better
predictors of the ground truth categories than ear-
lier layers (see Appendix D). Interestingly, layer 0
performance is about on par with the static BERT
baselines. Earlier layers of BERT have been shown
to contain less contextual information than later
layers (Ethayarajh, 2019), so this result further sup-
ports the idea that contextual information is impor-
tant to semantic categorization, and that averaging
over all contexts or feeding a word in isolation es-
sentially neutralizes the benefit of contextual mod-
els over static models for this task.

The benefit of sense-specific embeddings for this
task is clear in the example of freeze. In the ground
truth data, freeze belongs to just one class, related
to cooking (along with words like bake, fry, melt,
and thaw). Freeze has another figurative sense,
meaning to stop or suspend. Because the word
is polysemous, static embedding clusters struggle
to categorize it appropriately. In the aggregated
BERT clusters, freeze appears in a cluster predom-
inated by verbs related to violence (whip, shoot,
choke, crush, smash). Decontextualized BERT puts
freeze in a heterogeneous cluster with a few cook-
ing words (melt, stew, fry) but also many seemingly
unrelated words (knit, greet, disturb, wander). It
appears that the different senses of the word skew
its static representation and prevent accurate clas-
sification. MPro BERT, by contrast, puts freeze
in two clusters: one related to cooking (as in the
ground truth) and another cluster with words like
stop, delay, arrest and restrict, which seems to
correspond to the figurative sense of freeze. Thus
factoring out different senses allows MPro BERT to
give a more accurate and reasonable categorization.

MPro BERT tends to capture more distinct
senses per word than human participants did, as
they generally focused on a single sense when cate-
gorizing. On average, each word form appeared in
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3.02 MPro BERT clusters, but only in 1.14 ground
truth classes. For example, the word form jump
occurs in one MPro BERT cluster corresponding
to violence (jump#ATTACK), another cluster corre-
sponding to physical movement (jump#HOP), and
a third one related to change (jump#INCREASE).
In the ground truth data, jump only occurs once,
in a class related to physical movement. Perhaps
this is the most salient sense of the word jump, and
therefore participants were more likely to be think-
ing of this sense during the word sorting task and
ignore its other possible senses. But although the
other two senses of jump counted against MPro
BERT in our evaluation, the fact that embeddings
for jump were assigned three separate clusters is
not necessarily a weakness: the MPro BERT clus-
ters are more thorough as they represent each sense
of the word separately and appropriately assign
them to separate clusters.

This example demonstrates that F1 scores do not
give a full picture of the quality or reasonableness
of the word embedding clusters. Categorization is
a relatively flexible task; there may be many possi-
ble criteria for sorting a group of words, especially
when given such a large set of words to sort (Tver-
sky, 1977; Barsalou, 1982). This might explain the
low inter-annotator agreement between two initial
test participants on Majewska et al. (2021)’s verb
sorting task (0.400 B-Cubed score), suggesting that
humans don’t perform very consistently in creating
broad semantic categories from a large group of
words. As a result, it’s possible for induced cate-
gories from word embeddings to be reasonable, but
still correlate poorly with our ground truth data.

6 Fine-grained Categorization

Next, we examine how word embeddings fare on
finer-grained categories. We speculated that given
a smaller, more focused set of words, there is less
ambiguity about the relevant criteria for categoriz-
ing words, and so evaluating word embeddings on
fine-grained categorization may be a better test of
model quality than coarse-grained categorization.
This section describes how we created a benchmark
for fine-grained categorization from the SpA-Verb
Phase 2 data, and evaluated the same models on
this new benchmark.

6.1 Dataset

In addition to the broad semantic classes created
in Phase 1, SpA-Verb also contains Phase 2: a set

of fine-grained similarity data from a spatial multi-
arrangement task, where participants arranged all
words within a single Phase 1 class on a screen
according to their relative similarity. The result
is a complete matrix of semantic distances for all
words within each Phase 1 class. While the original
authors use this as resource for evaluating models
on standard pair-wise similarity, it can also serve in-
directly as a resource for evaluating category struc-
ture. In order to use this similarity data to evaluate
embedding clusters, we take each row of a class’
distance matrix as the vector representation for that
word. We run k-means clustering on these represen-
tations, and use these clusters as the ground truth
to compare with word embedding clusters.

In the fine-grained categorization setting, we as-
sume that only one sense is relevant for each word;
the other words in the class implicitly disambiguate
between possible senses of a polysemous word,
since they were all assigned to a single semantic
class in Phase 1. For example, when stew occurs
in a class with other words related to cooking, the
sense of stew meaning to worry or fret is not rel-
evant. Since there is only one relevant sense per
word for the fine-grained categorization task, in
order to evaluate our MPro BERT embeddings in
this setting, we need to automatically decide which
of a word’s sense embeddings is the most relevant
given a particular class. To do this, we apply the
MAXSIM method used by Chronis and Erk (2020):
for each pair of words in a given class, we find the
MPro embeddings that yield the highest similar-
ity between the two words. Then, for each word,
the prototype that produced the MAXSIM for the
most other class members is selected as its most
relevant sense, and all other sense embeddings are
discarded.

6.2 Results

Table 2 shows the average F1 scores across all 17
classes for each type of embedding. Unlike in the
coarse-grained setting, there is not a significant dif-
ference between models. Aggregated BERT has a
slight advantage with an average F1 of 0.643. All
three types of static embeddings do significantly
better on fine-grained than coarse-grained catego-
rization. By contrast, F1 for BERT MPro embed-
dings is 15 points lower in the fine-grained com-
pared to the coarse-grained setting. Furthermore,
the opposite pattern appears across BERT layers,
with earlier layers performing better and later lay-
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Model Average F1
Random baseline 0.033

word2vec 0.626
BERT decontext. 0.586
BERT aggregated 0.643

MPro BERT 0.582

Table 2: Average F1 across all classes for each embed-
ding type on fine-grained categorization.

ers performing worse. It seems that accounting for
polysemy makes little difference in the ability of
embeddings to identify fine-grained categories.

The ground truth classes with the highest F1
across models were related to sound (buzz, boom,
chirp, rattle) and physiological processes (sweat,
cough, breathe, yawn). The classes with the lowest
F1 across models were transitive verbs related to
physical movement (drag, fling, tow, throw, lift)
and verbs of communication (announce, discuss,
explain, tell). In general, smaller and more spe-
cific classes were easier to categorize than larger,
broader classes (see Appendix E for detailed break-
down of model performance by category).

This stark difference in the relative performance
of static and contextual embeddings on two dif-
ferent levels of category granularity is surprising.
One possible explanation for this result is that the
ground truth for fine-grained categorization was de-
rived from similarity judgment data, and thus may
reflect a fundamentally different cognitive process
than the coarse-grained ground truth, which came
from a sorting task. Phase 2 data was obtained by
asking participants to make similarity judgments
among a group of words. Our assumption was that
since similarity is the primary criteria for catego-
rizing words, similarity data would yield the same
categories as a sorting task. However, in the ab-
sence of any disambiguating context, participants
may have made decisions about similarity based
on all exemplars of a word, rather than focusing
on one particular sense. By contrast, participants
in the Phase 1 sorting task were asked to make
explicit category judgments. Categorizing words
forces participants to select criteria or features for
membership in a particular category. Because of
this, participants in the sorting task may have sin-
gled out a particular sense of a word in making
their decision. Evidence from psycholinguistics
supports the idea that human performance on differ-
ent semantic tasks may derive from very different
cognitive processes (Kumar, 2021).

If context-free similarity judgments activate all
exemplars of a word, this would explain why static
embeddings (in particular the aggregated BERT
embeddings, which average over many exemplars)
would better fit the Phase 2 data. On the other hand,
if semantic categorization activates specific crite-
ria and forces participants to focus on a particular
sense of words in making a decision, this would
explain why MPro BERT better predicts the Phase
1 data. In order to make a more direct comparison
between coarse- and fine-grained categorization,
we plan to replicate the Phase 1 sorting task for
each individual semantic class.

7 Conclusion

Majewska et al. (2021) found that contextual BERT
embeddings performed more poorly than static
word2vec on the SpA-Verb semantic categoriza-
tion benchmark. In this paper, we challenged their
analysis, testing the effect of sense-specific con-
textual information on model performance on two
different levels of category granularity, and find
that the rich sense-specific information contained
in BERT, if properly exploited, allows BERT to
excel in predicting coarse-grained human seman-
tic categories. Our results suggest that polysemy
affects coarse-grained categorization, and that ac-
counting for polysemy can significantly improve
the predictions of embedding models.

On the other hand, contextual information seems
to be less relevant in modeling finer-grained cate-
gories derived from similarity judgments. It seems
that humans rely on different underlying processes
in making context-free similarity judgments be-
tween words than when making decisions about
category membership. While similarity is judged
based on a summary of all of a word’s exemplars,
categorization requires choosing specific criteria
for membership and thus focuses attention on a
particular sense of a word.

While using sense-specific embeddings seems
best for performing category induction, static repre-
sentations are still desirable for some applications.
For example, in making a cross-linguistic or his-
torical comparison of word meanings, clustering
average representations may be more appropriate
than many sense-specific ones. Ultimately, both
types of behavior are of interest within NLP, but
it’s important to choose an approach carefully, by
considering exactly what type of behavior one is
trying to model.
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A Multi-Prototype BERT embeddings

Multi-prototype embeddings were generated as fol-
lows:

1. For each verb in the dataset, we sampled up
to 100 sentences from the British National
Corpus (BNC Consortium, 2007), excluding
non-verbal uses of the target word. A few
words in the set occurred in BNC fewer than
100 times. Four words (broil, corrupt, exhale,
and misspend) did not occur as verbs at all in
the BNC and were excluded from our analysis.
The average number of occurrences sampled
for a word was 95.6.

2. We extract BERT token embeddings for each
collected occurrence of a word. For words
which BERT tokenizes into multiple word
pieces, we average over all component pieces.

3. We cluster the token embeddings for each
verb. Like Chronis and Erk (2020), we use k-
means clustering to group tokens into ‘sense’

clusters. We use the number of verb senses
listed in WordNet (Miller, 1995) to determine
the appropriate k for each word. Verbs in the
dataset had on average 5.9 senses. (min: 1,
max: 59, for buzz).

4. After identifying clusters, we take the k clus-
ter centroids for each word. These are the em-
beddings we evaluate against the SpA-Verb
categorization data.

B Evaluation metrics

As in Majewska et al. (2021), we evaluate perfor-
mance of word embeddings on semantic catego-
rization using modified purity and weighted class
accuracy, which are combined in an F1 score, cal-
culated as their balanced harmonic mean. Modified
purity is the mean precision of automatically in-
duced verb clusters:

MPUR =

∑
C∈Clust,nprev(C)>1nprev(C)

#test_verbs
(1)

where each cluster C from the set of all KClust

induced clusters Clust is associated with its preva-
lent gold class, and nprev(C) is the number of
verbs in an induced cluster C taking that preva-
lent class, with all other verbs considered errors.
#test_verbs is the total number of verbs in the
dataset. While modified purity is a measure of
precision, weighted class accuracy targets recall:

WACC =

∑
C∈Goldndom(C)

#test_verbs
(2)

where for each class C from the set of gold stan-
dard classes Gold, we identify the dominant cluster
from the set of induced clusters having most verbs
in common with C (ndom(C)).

C Ground truth coarse-grained
categories

The ground truth categories used for evaluating
models on coarse-grained categorization come
from Phase 1 of SpA-Verb. 825 verbs are grouped
into 17 broad semantic classes. Table 3 gives an
overview of the classes.

D MPro BERT Cross Layer Analysis

The MPro BERT embeddings from later layers of
BERT are better predictors of the ground truth cate-
gories than earlier layers. As shown in Figure 1, F1
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Figure 1: Performance of multi-prototype BERT embeddings from each layer. Left: gold case (k=17), right: optimal
case

Cluster label Example verbs
movement wander, fly, glide, roam
communication persuade, command, tell
crime & law beat, abduct, abuse, shoot
negative emotion offend, aggravate, enrage
positive emotion admire, respect, adore, like
cognitive process suppose, assume, realize
cooking cook, slice, stew, boil
possession belong, obtain, acquire

Table 3: A sample of the 17 gold classes in SpA-Verb
dataset (labels are given for descriptive purposes only)

scores increase virtually monotonically from the
first to last layer of BERT. Layer 0 performance is
about on par with the static BERT baselines.

In general, recall (WACC) decreases from earlier
to later layers of BERT, while the precision mea-
sure (MPUR) increases. The increase in precision
is steeper than the decrease in recall, leading the
F1 scores to trend up in later layers. The optimal k
value for the middle layers is very low (5-10) but
much higher for early and later layers (20-30). As
can be seen in Figure 1, there is a spike in recall in
the middle layers, likely due to the lower k values.
Having a few large clusters means that clusters are
more likely to overlap with gold classes, even if
they contain extra irrelevant members.

E Fine-Grained Categorization Results

Table 4 shows a breakdown of the F1 scores for
each model by class. The classes which all mod-
els did best at categorizing were Class 13 (which
contains words describing sounds like boom, buzz,
crunch, rattle, squeak), Class 3 (related to change:
accelerate, diminish, grow) and Class 12 (physi-

ological processes: sweat, cough, breathe, yawn).
The classes which models struggled most with were
Class 15 (physical movement: catch, grab, fling,
jerk), Class 7 (communication: announce, discuss,
explain, tell), and Class 9 (cognitive processes: an-
alyze, describe, ponder, think).
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Class word2vec BERT decontext. BERT aggreg. MPro BERT Average
1 0.624 0.521 0.547 0.541 0.558
2 0.563 0.606 0.619 0.563 0.588
3 0.679 0.660 0.685 0.629 0.663
4 0.535 0.498 0.654 0.545 0.558
5 0.610 0.676 0.673 0.671 0.657
6 0.600 0.589 0.697 0.61 0.625
7 0.498 0.532 0.605 0.556 0.548
8 0.649 0.542 0.649 0.586 0.606
9 0.579 0.521 0.578 0.539 0.554

10 0.504 0.59 0.587 0.598 0.570
11 0.788 0.624 0.60 0.585 0.651
12 0.722 0.581 0.727 0.616 0.661
13 0.742 0.647 0.764 0.573 0.682
14 0.603 0.499 0.653 0.58 0.584
15 0.508 0.572 0.531 0.561 0.543
16 0.740 0.629 0.672 0.545 0.646
17 0.694 0.658 0.682 0.595 0.657

Average 0.626 0.586 0.643 0.582 0.609

Table 4: F1 for each class and embedding type on fine-grained categorization.
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