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Abstract

Recent works have discussed the extent to
which emergent languages can exhibit prop-
erties of natural languages particularly learn-
ing compositionality. In this paper, we investi-
gate the learning biases that affect the efficacy
and compositionality in multi-agent communi-
cation in addition to the communicative band-
width. Our foremost contribution is to explore
how the capacity of a neural network impacts
its ability to learn a compositional language.
We additionally introduce a set of evaluation
metrics with which we analyze the learned lan-
guages. Our hypothesis is that there should be
a specific range of model capacity and channel
bandwidth that induces compositional struc-
ture in the resulting language and consequently
encourages systematic generalization. While
we empirically see evidence for the bottom of
this range, we curiously do not find evidence
for the top part of the range and believe that
this is an open question for the community.

1 Introduction

Compositional language learning in the context
of multi agent emergent communication has been
extensively studied (Foerster et al., 2016; Lazari-
dou et al., 2017; Baroni, 2020). These works have
found that while most emergent languages do not
tend to be compositional, they can be guided to-
wards this attribute through artificial task-specific
constraints (Harding Graesser et al., 2019; Lee
et al., 2018; Słowik et al., 2020).

In this paper, we focus on how a neural network,
specifically a generative one, can learn a compo-
sitional language. Moreover, we ask how this can
occur without task-specific constraints. To accom-
plish this, we first define what is a language and
what we mean by compositionality. In tandem, we
introduce precision and recall, two metrics that
help us measure how well a generative model at
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large has learned a grammar from a finite set of
training instances. We then use a variational au-
toencoder with a discrete sequence bottleneck to
investigate how well the model learns a compo-
sitional language, in addition to what affects that
learning. This allows us to derive residual entropy,
a third metric that reliably measures composition-
ality in our particular environment. We use this
metric to cross-validate precision and recall.

Our paper is most similar to Kottur et al. (2017),
which showed that compositional language arose
only when certain constraints on the agents are sat-
isfied. While the constraints they examined were
either making their models memoryless or having
a minimal vocabulary in the language, we hypoth-
esized about the importance for agents to have
small capacity relative to the number of concepts
to which they are exposed. Each of Verhoef et al.
(2016); Kirby et al. (2015); Zaslavsky et al. (2018)
examine the trade-off between expression and com-
pression in both emergent and natural languages,
in addition to how that trade-off affects the learners.
We differ in that we target a specific aspect of the
agent (capacity) and ask how that aspect biases the
learning.

2 Compositional Language and Learning

We consider the problem of learning an underlying
language L? from a finite set of training strings
randomly drawn from it: D = {s|s ∼ G?} where
G? is the minimal length generator associated with
L?. We assume |D| � |L?| and our goal is to
use D to learn a language L that approximates L?

as well as possible. We know that there exists an
equivalent generator G for L, and so our problem
becomes estimating a generator from this finite set
rather than reconstructing an entire set of strings
belonging to the original language L∗. We cast
the problem of estimating a generator G as density
modeling, in which case the goal is to estimate a
distribution p(s). Sampling from p(s) is equivalent



Figure 1: The grid above shows five shapes and five
colors. Agents with a non-compositional language can
use this shared map to communicate "Red Circle" with
only dlog2 52e = 5 bits. If they instead used a composi-
tional language, it would require dlog2 5e = 3 bits for
each concept for a total of 6 bits to convey the string.
On the other hand, the agent needs 25 memory slots to
store the concepts in the former case but only 10 slots
in the compositional case. This trade-off exemplifies
the motivation for our investigation because it suggests
that a key driver of compositionality in language is the
capacity of an agent relative to the total number of ob-
jects in its environment.

to generating a string from the generator G.

Evaluation metrics When the language was
learned perfectly, any string sampled from the
learned distribution p(s) must belong to L?. Also,
any string in L? must be assigned a non-zero prob-
ability under p(s). Otherwise, the set of strings
generated from this generator, implicitly defined
via p(s), is not identical to the original language
L?. This observation leads to two metrics for eval-
uating the quality of the estimated language with
the distribution p(s), precision and recall:

Precision(L?, p) =
1

|L?|
∑
s∈L

I(s ∈ L?) (1)

Recall(L?, p) =
∑
s∈L?

log p(s) (2)

where I(x) is the indicator function. These metrics
are designed to be fit for any compositional struc-
ture rather than one-off evaluation approaches.

Our setup We simplify and assume that each of
the characters in the string s ∈ L? correspond to
underlying concepts. While the inputs are ordered
according to the sequential concepts, our model
encodes them using a bag of words (BoW) repre-
sentation.

The speaker fθ is parameterized using a recur-
rent policy which receives the sequence of concate-
nated one-hot input tokens of s and converts each of

them to an embedding. It then runs an LSTM non-
autoregressively for l timesteps taking the flattened
representation of the input embeddings as its input
and linearly projecting each result to a probability
distribution over {0, 1}. This results in a sequen-
tial Bernoulli distribution over l latent variables:
fθ(z|s) =

∏l
t=1 p(zt|s; θ). From this distribution,

we can sample a latent string z = (z1, . . . , zl).
The listener gφ receives z and uses a BoW rep-

resentation to encode them into its own embed-
ding space. Taking the flattened representation of
these embeddings as input, we run an LSTM for
|N | time steps, each time outputting a probability
distribution over the full alphabet Σ: gφ(s|z) =∏|N |
j=1 p(sj |z;φ).
To train the whole system end-to-end

(Sukhbaatar et al., 2016; Mordatch and Abbeel,
2018) via backpropogation, we apply a continuous
approximation to zt that depends on a learned tem-
perature parameter τ . We use the ‘straight-through‘
version of Gumbel-Softmax (Jang et al., 2017;
Maddison et al., 2017) to convert the continuous
distribution to a discrete distribution for each zt.
The final sequence of one hot vectors encoding z
is our message, which is passed to the listener gφ.

The prior pλ encodes the message z using a BoW
representation. It gives the probability of z accord-
ing to the prior (binary) distribution for each zt and
is defined as: pλ(z) =

∏l
t=1 p(zt|λ).

This can be used both to compute the prior proba-
bility of a latent string and also to efficiently sample
from pλ using ancestral sampling. Penalizing the
KL divergence between the speaker’s distribution
and the prior distribution encourages the emergent
protocol to use latent strings that are as diverse as
possible.

Hypotheses on compositionality Under this
framework for language learning, we can make
the following observations. If the length of the
latent sequence l < log2 |L?|, it is impossible for
the model to avoid the failure case because there
will be |L?| − 2l strings in L? that cannot be gener-
ated from the trained model. Consequently, recall
cannot be maximized. However, this may be dif-
ficult to check using the sample-based estimate as
the chance of sampling s ∈ L?\

∫
gφ(s|z)pλ(z)dz

decreases proportionally to the size of L?. This is
especially true when the gap |L?| − 2l is narrow.

When l ≥ log2 |L?|, there are three cases. The
first is when there are not enough parameters θ to
learn the underlying compositional grammar, in
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Figure 2: Histograms showing precision, recall (defined in § 2), and entropy (defined in § 3) over the test set. We
show results for bits 19 to 25 and parameter range 72k to 1534k (details in § 3). Each bit/parameter combination
is trained for 10 seeds over 200k steps.

which case L? cannot be learned. The second case
is when the number of parameters |θ| is greater
than that required to store all the training strings,
i.e., |θ| = O(l|D|). Here, it is highly likely for the
model to overfit as it can map each training string
with a unique latent string without having to learn
any of L?’s compositional structure. Lastly, when
the number of parameters lies in between these two
poles, we hypothesize that the model will capture
the underlying compositional structure and exhibit
systematic generalization (Bahdanau et al., 2019).

3 Experiments

Models and Learning The task is to communi-
cate 6 concepts, each of which have 10 possible
values with a total dataset size of 106. We train the
proposed VAE We gradually decrease the number
of LSTM units from the base model by a factor α ∈
(0, 1]. This is how we control the number of param-
eters (|θ| and |φ|). We obtain seven models from
each of these by varying the length of the latent se-
quence l from {19, 20, 21, 22, 23, 24, 25}. These
were chosen because we both wanted to show a
range of bits and because we need at least 20 bits
to cover the 106 strings in L∗ (dlog2 106e = 20).

Evaluation: Residual Entropy Our setup al-
lows us to design a metric by which we can check
the compositionality of the learned language L by
examining how the underlying concepts are de-
scribed by a string. Let p be a sequence of par-
titions of {1, 2, . . . , l}. We define the degree of
compositionality as the ratio between the variabil-

ity of each concept Ci and the variability explained
by a latent subsequence z[pi] indexed by an asso-
ciated partition pi. More formally, the degree of
compositionality given the partition sequence p is
defined as a residual entropy

re(p, L, L?) =
1

|N |

|N |∑
i=1

HL(Ci|z[pi])/HL?(Ci)

where there are |N | concepts by the definition of
our language. When each term inside the sum-
mation is close to zero, it implies that a subse-
quence z[pi] explains most of the variability of
the specific concept Ci, and we consider this sit-
uation compositional. The residual entropy of a
trained model is then the smallest re(p) over all
possible sequences of partitions P and spans from
0 (compositional) to 1 (non-compositional) where
re(L,L?) = minp∈P re(p, L, L?).

3.1 Results
Fig. 3 shows the main findings of our research. In
plot (a), we see the parameter counts at the thresh-
old. Below these values, the model cannot solve
the task but above these, it can solve it. Further, ob-
serve the curve delineated by the lower left corner
of the shift from unsuccessful to successful models.
This inverse relationship between bits and parame-
ters shows that the more parameters in the model,
the fewer bits it needs to solve the task. Note how-
ever that it could only solve the task with fewer
bits if it was forming a non-compositional code,
suggesting that higher parameter models are able
to do so while lower parameter ones cannot.



Figure 3: Main results showing best and worst performances of the proposed metrics over 10 seeds. See Section
3.1 for detailed analysis. Panels (a) and (f) show the accuracy of the training data, (b) and (d) show entropy, (e)
and (g) show recall over the test data, and (c) plots the max difference in accuracy between training and test.

Observe further that all of our models above the
minimum threshold (72,400) have the capacity to
learn a compositional code. This is shown by the
perfect training accuracy achieved by all of those
models in plot (a) for 24 bits and by the perfect
compositionality (zero entropy) in plot (b) for 24
bits. Together with the above, this validates that
learning compositional codes requires less capac-
ity than learning non-compositional codes. Plot
(c) confirms our hypothesis that large models can
memorize the entire dataset. The 24 bit model with
971,400 parameters achieves a train accuracy of 1.0
and a validation accuracy of 0.0. Cross-validating
this with plots (d) and (g), we find that a member of
the same parameter class is non-compositional and
that there is one that achieves unusually low recall.
We verified that these are all the same seed, which
shows that the agents in this model are memorizing
the dataset.

Plots (b) and (e) show that our compositionality
metrics pass two sanity checks - high recall and per-
fect entropy can only be achieved with a channel
that is sufficiently large (i.e. 24 bits) to allow for a
compositional latent representation. Plot (f) shows
that while the capacity does not affect the ability to
learn a compositional language across the model
range, it does change the learnability. Here we find
that smaller models can fail to solve the task for
any bandwidth, which coincides with literature sug-
gesting a link between overparameterization and
learnability (Li and Liang, 2018; Du et al., 2019).
Finally, as expected, we find that no model learns
to solve the task with < 20 bits, validating that the
minimum required number of bits for learning a
language of size |L| is dlog(|L|)e. We also see that
no model learns to solve it for 20 bits, which is
likely due to optimization difficulties.

We first confirm the effectiveness of training by
observing that almost all the models achieve per-
fect precision (Fig. 2 (a)), implying that L ⊆ L?,

where L is the language learned by the model. This
occurs even with our learning which encouraging
the model to capture all training strings rather than
to focus on only a few training strings. A natural
follow-up question is how large is L?\L. We mea-
sure this with recall in Fig. 2 (b), which shows a
clear phase transition according to the model ca-
pacity when l ≥ 22. This agrees with what we saw
in Fig. 3 and is equivalent to saying |L?\L| � 0
at a value that is close to our predicted boundary
of l = dlog2 106e = 20. We attribute this gap to
the difficulty in learning a perfectly-parameterized
neural network.

These results clearly confirm the first part of our
hypothesis - the latent sequence length must be at
least as large as log |L?|. They also confirm that
there is a lowerbound on the number of parameters
over which this model can successfully learn the
underlying language. We have not been able to ver-
ify the upper bound in our experiments, which may
require either a more (computationally) extensive
set of experiments with even more parameters or
a better theoretical understanding of the inherent
biases behind learning with this architecture, such
as from recent work on overparameterized models
(Belkin et al., 2019; Nakkiran et al., 2020).

4 Conclusion

This paper opens the door for a vast amount of
follow-up research. All our models were suffi-
ciently large to represent the compositional struc-
ture of the language when given sufficient band-
width. Furthermore, while large models did overfit,
this was an exception rather than the rule. We hy-
pothesize that this is due to the large number of ex-
amples in our language, which forces the model to
generalize, but note that there are likely additional
biases at play that warrant further investigation.
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